mirror of
https://github.com/torvalds/linux.git
synced 2025-12-01 07:26:02 +07:00
Calling __kho_unpreserve() on a pair of (pfn, end_pfn) that wasn't
preserved is a bug. Currently, if that is done, the physxa or bits can be
NULL. This results in a soft lockup since a NULL physxa or bits results
in redoing the loop without ever making any progress.
Return when physxa or bits are not found, but WARN first to loudly
indicate invalid behaviour.
Link: https://lkml.kernel.org/r/20251103180235.71409-3-pratyush@kernel.org
Fixes: fc33e4b44b ("kexec: enable KHO support for memory preservation")
Signed-off-by: Pratyush Yadav <pratyush@kernel.org>
Reviewed-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Cc: Alexander Graf <graf@amazon.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
1645 lines
39 KiB
C
1645 lines
39 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* kexec_handover.c - kexec handover metadata processing
|
|
* Copyright (C) 2023 Alexander Graf <graf@amazon.com>
|
|
* Copyright (C) 2025 Microsoft Corporation, Mike Rapoport <rppt@kernel.org>
|
|
* Copyright (C) 2025 Google LLC, Changyuan Lyu <changyuanl@google.com>
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "KHO: " fmt
|
|
|
|
#include <linux/cleanup.h>
|
|
#include <linux/cma.h>
|
|
#include <linux/count_zeros.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/kexec.h>
|
|
#include <linux/kexec_handover.h>
|
|
#include <linux/libfdt.h>
|
|
#include <linux/list.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/page-isolation.h>
|
|
#include <linux/vmalloc.h>
|
|
|
|
#include <asm/early_ioremap.h>
|
|
|
|
#include "kexec_handover_internal.h"
|
|
/*
|
|
* KHO is tightly coupled with mm init and needs access to some of mm
|
|
* internal APIs.
|
|
*/
|
|
#include "../mm/internal.h"
|
|
#include "kexec_internal.h"
|
|
|
|
#define KHO_FDT_COMPATIBLE "kho-v1"
|
|
#define PROP_PRESERVED_MEMORY_MAP "preserved-memory-map"
|
|
#define PROP_SUB_FDT "fdt"
|
|
|
|
#define KHO_PAGE_MAGIC 0x4b484f50U /* ASCII for 'KHOP' */
|
|
|
|
/*
|
|
* KHO uses page->private, which is an unsigned long, to store page metadata.
|
|
* Use it to store both the magic and the order.
|
|
*/
|
|
union kho_page_info {
|
|
unsigned long page_private;
|
|
struct {
|
|
unsigned int order;
|
|
unsigned int magic;
|
|
};
|
|
};
|
|
|
|
static_assert(sizeof(union kho_page_info) == sizeof(((struct page *)0)->private));
|
|
|
|
static bool kho_enable __ro_after_init;
|
|
|
|
bool kho_is_enabled(void)
|
|
{
|
|
return kho_enable;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kho_is_enabled);
|
|
|
|
static int __init kho_parse_enable(char *p)
|
|
{
|
|
return kstrtobool(p, &kho_enable);
|
|
}
|
|
early_param("kho", kho_parse_enable);
|
|
|
|
/*
|
|
* Keep track of memory that is to be preserved across KHO.
|
|
*
|
|
* The serializing side uses two levels of xarrays to manage chunks of per-order
|
|
* PAGE_SIZE byte bitmaps. For instance if PAGE_SIZE = 4096, the entire 1G order
|
|
* of a 8TB system would fit inside a single 4096 byte bitmap. For order 0
|
|
* allocations each bitmap will cover 128M of address space. Thus, for 16G of
|
|
* memory at most 512K of bitmap memory will be needed for order 0.
|
|
*
|
|
* This approach is fully incremental, as the serialization progresses folios
|
|
* can continue be aggregated to the tracker. The final step, immediately prior
|
|
* to kexec would serialize the xarray information into a linked list for the
|
|
* successor kernel to parse.
|
|
*/
|
|
|
|
#define PRESERVE_BITS (PAGE_SIZE * 8)
|
|
|
|
struct kho_mem_phys_bits {
|
|
DECLARE_BITMAP(preserve, PRESERVE_BITS);
|
|
};
|
|
|
|
static_assert(sizeof(struct kho_mem_phys_bits) == PAGE_SIZE);
|
|
|
|
struct kho_mem_phys {
|
|
/*
|
|
* Points to kho_mem_phys_bits, a sparse bitmap array. Each bit is sized
|
|
* to order.
|
|
*/
|
|
struct xarray phys_bits;
|
|
};
|
|
|
|
struct kho_mem_track {
|
|
/* Points to kho_mem_phys, each order gets its own bitmap tree */
|
|
struct xarray orders;
|
|
};
|
|
|
|
struct khoser_mem_chunk;
|
|
|
|
struct kho_serialization {
|
|
struct page *fdt;
|
|
struct list_head fdt_list;
|
|
struct dentry *sub_fdt_dir;
|
|
struct kho_mem_track track;
|
|
/* First chunk of serialized preserved memory map */
|
|
struct khoser_mem_chunk *preserved_mem_map;
|
|
};
|
|
|
|
struct kho_out {
|
|
struct blocking_notifier_head chain_head;
|
|
|
|
struct dentry *dir;
|
|
|
|
struct mutex lock; /* protects KHO FDT finalization */
|
|
|
|
struct kho_serialization ser;
|
|
bool finalized;
|
|
};
|
|
|
|
static struct kho_out kho_out = {
|
|
.chain_head = BLOCKING_NOTIFIER_INIT(kho_out.chain_head),
|
|
.lock = __MUTEX_INITIALIZER(kho_out.lock),
|
|
.ser = {
|
|
.fdt_list = LIST_HEAD_INIT(kho_out.ser.fdt_list),
|
|
.track = {
|
|
.orders = XARRAY_INIT(kho_out.ser.track.orders, 0),
|
|
},
|
|
},
|
|
.finalized = false,
|
|
};
|
|
|
|
static void *xa_load_or_alloc(struct xarray *xa, unsigned long index)
|
|
{
|
|
void *res = xa_load(xa, index);
|
|
|
|
if (res)
|
|
return res;
|
|
|
|
void *elm __free(free_page) = (void *)get_zeroed_page(GFP_KERNEL);
|
|
|
|
if (!elm)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
if (WARN_ON(kho_scratch_overlap(virt_to_phys(elm), PAGE_SIZE)))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
res = xa_cmpxchg(xa, index, NULL, elm, GFP_KERNEL);
|
|
if (xa_is_err(res))
|
|
return ERR_PTR(xa_err(res));
|
|
else if (res)
|
|
return res;
|
|
|
|
return no_free_ptr(elm);
|
|
}
|
|
|
|
static void __kho_unpreserve(struct kho_mem_track *track, unsigned long pfn,
|
|
unsigned long end_pfn)
|
|
{
|
|
struct kho_mem_phys_bits *bits;
|
|
struct kho_mem_phys *physxa;
|
|
|
|
while (pfn < end_pfn) {
|
|
const unsigned int order =
|
|
min(count_trailing_zeros(pfn), ilog2(end_pfn - pfn));
|
|
const unsigned long pfn_high = pfn >> order;
|
|
|
|
physxa = xa_load(&track->orders, order);
|
|
if (WARN_ON_ONCE(!physxa))
|
|
return;
|
|
|
|
bits = xa_load(&physxa->phys_bits, pfn_high / PRESERVE_BITS);
|
|
if (WARN_ON_ONCE(!bits))
|
|
return;
|
|
|
|
clear_bit(pfn_high % PRESERVE_BITS, bits->preserve);
|
|
|
|
pfn += 1 << order;
|
|
}
|
|
}
|
|
|
|
static int __kho_preserve_order(struct kho_mem_track *track, unsigned long pfn,
|
|
unsigned int order)
|
|
{
|
|
struct kho_mem_phys_bits *bits;
|
|
struct kho_mem_phys *physxa, *new_physxa;
|
|
const unsigned long pfn_high = pfn >> order;
|
|
|
|
might_sleep();
|
|
|
|
if (kho_out.finalized)
|
|
return -EBUSY;
|
|
|
|
physxa = xa_load(&track->orders, order);
|
|
if (!physxa) {
|
|
int err;
|
|
|
|
new_physxa = kzalloc(sizeof(*physxa), GFP_KERNEL);
|
|
if (!new_physxa)
|
|
return -ENOMEM;
|
|
|
|
xa_init(&new_physxa->phys_bits);
|
|
physxa = xa_cmpxchg(&track->orders, order, NULL, new_physxa,
|
|
GFP_KERNEL);
|
|
|
|
err = xa_err(physxa);
|
|
if (err || physxa) {
|
|
xa_destroy(&new_physxa->phys_bits);
|
|
kfree(new_physxa);
|
|
|
|
if (err)
|
|
return err;
|
|
} else {
|
|
physxa = new_physxa;
|
|
}
|
|
}
|
|
|
|
bits = xa_load_or_alloc(&physxa->phys_bits, pfn_high / PRESERVE_BITS);
|
|
if (IS_ERR(bits))
|
|
return PTR_ERR(bits);
|
|
|
|
set_bit(pfn_high % PRESERVE_BITS, bits->preserve);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct page *kho_restore_page(phys_addr_t phys)
|
|
{
|
|
struct page *page = pfn_to_online_page(PHYS_PFN(phys));
|
|
union kho_page_info info;
|
|
unsigned int nr_pages;
|
|
|
|
if (!page)
|
|
return NULL;
|
|
|
|
info.page_private = page->private;
|
|
/*
|
|
* deserialize_bitmap() only sets the magic on the head page. This magic
|
|
* check also implicitly makes sure phys is order-aligned since for
|
|
* non-order-aligned phys addresses, magic will never be set.
|
|
*/
|
|
if (WARN_ON_ONCE(info.magic != KHO_PAGE_MAGIC || info.order > MAX_PAGE_ORDER))
|
|
return NULL;
|
|
nr_pages = (1 << info.order);
|
|
|
|
/* Clear private to make sure later restores on this page error out. */
|
|
page->private = 0;
|
|
/* Head page gets refcount of 1. */
|
|
set_page_count(page, 1);
|
|
|
|
/* For higher order folios, tail pages get a page count of zero. */
|
|
for (unsigned int i = 1; i < nr_pages; i++)
|
|
set_page_count(page + i, 0);
|
|
|
|
if (info.order > 0)
|
|
prep_compound_page(page, info.order);
|
|
|
|
adjust_managed_page_count(page, nr_pages);
|
|
return page;
|
|
}
|
|
|
|
/**
|
|
* kho_restore_folio - recreates the folio from the preserved memory.
|
|
* @phys: physical address of the folio.
|
|
*
|
|
* Return: pointer to the struct folio on success, NULL on failure.
|
|
*/
|
|
struct folio *kho_restore_folio(phys_addr_t phys)
|
|
{
|
|
struct page *page = kho_restore_page(phys);
|
|
|
|
return page ? page_folio(page) : NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kho_restore_folio);
|
|
|
|
/**
|
|
* kho_restore_pages - restore list of contiguous order 0 pages.
|
|
* @phys: physical address of the first page.
|
|
* @nr_pages: number of pages.
|
|
*
|
|
* Restore a contiguous list of order 0 pages that was preserved with
|
|
* kho_preserve_pages().
|
|
*
|
|
* Return: 0 on success, error code on failure
|
|
*/
|
|
struct page *kho_restore_pages(phys_addr_t phys, unsigned int nr_pages)
|
|
{
|
|
const unsigned long start_pfn = PHYS_PFN(phys);
|
|
const unsigned long end_pfn = start_pfn + nr_pages;
|
|
unsigned long pfn = start_pfn;
|
|
|
|
while (pfn < end_pfn) {
|
|
const unsigned int order =
|
|
min(count_trailing_zeros(pfn), ilog2(end_pfn - pfn));
|
|
struct page *page = kho_restore_page(PFN_PHYS(pfn));
|
|
|
|
if (!page)
|
|
return NULL;
|
|
split_page(page, order);
|
|
pfn += 1 << order;
|
|
}
|
|
|
|
return pfn_to_page(start_pfn);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kho_restore_pages);
|
|
|
|
/* Serialize and deserialize struct kho_mem_phys across kexec
|
|
*
|
|
* Record all the bitmaps in a linked list of pages for the next kernel to
|
|
* process. Each chunk holds bitmaps of the same order and each block of bitmaps
|
|
* starts at a given physical address. This allows the bitmaps to be sparse. The
|
|
* xarray is used to store them in a tree while building up the data structure,
|
|
* but the KHO successor kernel only needs to process them once in order.
|
|
*
|
|
* All of this memory is normal kmalloc() memory and is not marked for
|
|
* preservation. The successor kernel will remain isolated to the scratch space
|
|
* until it completes processing this list. Once processed all the memory
|
|
* storing these ranges will be marked as free.
|
|
*/
|
|
|
|
struct khoser_mem_bitmap_ptr {
|
|
phys_addr_t phys_start;
|
|
DECLARE_KHOSER_PTR(bitmap, struct kho_mem_phys_bits *);
|
|
};
|
|
|
|
struct khoser_mem_chunk_hdr {
|
|
DECLARE_KHOSER_PTR(next, struct khoser_mem_chunk *);
|
|
unsigned int order;
|
|
unsigned int num_elms;
|
|
};
|
|
|
|
#define KHOSER_BITMAP_SIZE \
|
|
((PAGE_SIZE - sizeof(struct khoser_mem_chunk_hdr)) / \
|
|
sizeof(struct khoser_mem_bitmap_ptr))
|
|
|
|
struct khoser_mem_chunk {
|
|
struct khoser_mem_chunk_hdr hdr;
|
|
struct khoser_mem_bitmap_ptr bitmaps[KHOSER_BITMAP_SIZE];
|
|
};
|
|
|
|
static_assert(sizeof(struct khoser_mem_chunk) == PAGE_SIZE);
|
|
|
|
static struct khoser_mem_chunk *new_chunk(struct khoser_mem_chunk *cur_chunk,
|
|
unsigned long order)
|
|
{
|
|
struct khoser_mem_chunk *chunk __free(free_page) = NULL;
|
|
|
|
chunk = (void *)get_zeroed_page(GFP_KERNEL);
|
|
if (!chunk)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
if (WARN_ON(kho_scratch_overlap(virt_to_phys(chunk), PAGE_SIZE)))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
chunk->hdr.order = order;
|
|
if (cur_chunk)
|
|
KHOSER_STORE_PTR(cur_chunk->hdr.next, chunk);
|
|
return no_free_ptr(chunk);
|
|
}
|
|
|
|
static void kho_mem_ser_free(struct khoser_mem_chunk *first_chunk)
|
|
{
|
|
struct khoser_mem_chunk *chunk = first_chunk;
|
|
|
|
while (chunk) {
|
|
struct khoser_mem_chunk *tmp = chunk;
|
|
|
|
chunk = KHOSER_LOAD_PTR(chunk->hdr.next);
|
|
kfree(tmp);
|
|
}
|
|
}
|
|
|
|
static int kho_mem_serialize(struct kho_serialization *ser)
|
|
{
|
|
struct khoser_mem_chunk *first_chunk = NULL;
|
|
struct khoser_mem_chunk *chunk = NULL;
|
|
struct kho_mem_phys *physxa;
|
|
unsigned long order;
|
|
int err = -ENOMEM;
|
|
|
|
xa_for_each(&ser->track.orders, order, physxa) {
|
|
struct kho_mem_phys_bits *bits;
|
|
unsigned long phys;
|
|
|
|
chunk = new_chunk(chunk, order);
|
|
if (IS_ERR(chunk)) {
|
|
err = PTR_ERR(chunk);
|
|
goto err_free;
|
|
}
|
|
|
|
if (!first_chunk)
|
|
first_chunk = chunk;
|
|
|
|
xa_for_each(&physxa->phys_bits, phys, bits) {
|
|
struct khoser_mem_bitmap_ptr *elm;
|
|
|
|
if (chunk->hdr.num_elms == ARRAY_SIZE(chunk->bitmaps)) {
|
|
chunk = new_chunk(chunk, order);
|
|
if (IS_ERR(chunk)) {
|
|
err = PTR_ERR(chunk);
|
|
goto err_free;
|
|
}
|
|
}
|
|
|
|
elm = &chunk->bitmaps[chunk->hdr.num_elms];
|
|
chunk->hdr.num_elms++;
|
|
elm->phys_start = (phys * PRESERVE_BITS)
|
|
<< (order + PAGE_SHIFT);
|
|
KHOSER_STORE_PTR(elm->bitmap, bits);
|
|
}
|
|
}
|
|
|
|
ser->preserved_mem_map = first_chunk;
|
|
|
|
return 0;
|
|
|
|
err_free:
|
|
kho_mem_ser_free(first_chunk);
|
|
return err;
|
|
}
|
|
|
|
static void __init deserialize_bitmap(unsigned int order,
|
|
struct khoser_mem_bitmap_ptr *elm)
|
|
{
|
|
struct kho_mem_phys_bits *bitmap = KHOSER_LOAD_PTR(elm->bitmap);
|
|
unsigned long bit;
|
|
|
|
for_each_set_bit(bit, bitmap->preserve, PRESERVE_BITS) {
|
|
int sz = 1 << (order + PAGE_SHIFT);
|
|
phys_addr_t phys =
|
|
elm->phys_start + (bit << (order + PAGE_SHIFT));
|
|
struct page *page = phys_to_page(phys);
|
|
union kho_page_info info;
|
|
|
|
memblock_reserve(phys, sz);
|
|
memblock_reserved_mark_noinit(phys, sz);
|
|
info.magic = KHO_PAGE_MAGIC;
|
|
info.order = order;
|
|
page->private = info.page_private;
|
|
}
|
|
}
|
|
|
|
static void __init kho_mem_deserialize(const void *fdt)
|
|
{
|
|
struct khoser_mem_chunk *chunk;
|
|
const phys_addr_t *mem;
|
|
int len;
|
|
|
|
mem = fdt_getprop(fdt, 0, PROP_PRESERVED_MEMORY_MAP, &len);
|
|
|
|
if (!mem || len != sizeof(*mem)) {
|
|
pr_err("failed to get preserved memory bitmaps\n");
|
|
return;
|
|
}
|
|
|
|
chunk = *mem ? phys_to_virt(*mem) : NULL;
|
|
while (chunk) {
|
|
unsigned int i;
|
|
|
|
for (i = 0; i != chunk->hdr.num_elms; i++)
|
|
deserialize_bitmap(chunk->hdr.order,
|
|
&chunk->bitmaps[i]);
|
|
chunk = KHOSER_LOAD_PTR(chunk->hdr.next);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* With KHO enabled, memory can become fragmented because KHO regions may
|
|
* be anywhere in physical address space. The scratch regions give us a
|
|
* safe zones that we will never see KHO allocations from. This is where we
|
|
* can later safely load our new kexec images into and then use the scratch
|
|
* area for early allocations that happen before page allocator is
|
|
* initialized.
|
|
*/
|
|
struct kho_scratch *kho_scratch;
|
|
unsigned int kho_scratch_cnt;
|
|
|
|
/*
|
|
* The scratch areas are scaled by default as percent of memory allocated from
|
|
* memblock. A user can override the scale with command line parameter:
|
|
*
|
|
* kho_scratch=N%
|
|
*
|
|
* It is also possible to explicitly define size for a lowmem, a global and
|
|
* per-node scratch areas:
|
|
*
|
|
* kho_scratch=l[KMG],n[KMG],m[KMG]
|
|
*
|
|
* The explicit size definition takes precedence over scale definition.
|
|
*/
|
|
static unsigned int scratch_scale __initdata = 200;
|
|
static phys_addr_t scratch_size_global __initdata;
|
|
static phys_addr_t scratch_size_pernode __initdata;
|
|
static phys_addr_t scratch_size_lowmem __initdata;
|
|
|
|
static int __init kho_parse_scratch_size(char *p)
|
|
{
|
|
size_t len;
|
|
unsigned long sizes[3];
|
|
size_t total_size = 0;
|
|
int i;
|
|
|
|
if (!p)
|
|
return -EINVAL;
|
|
|
|
len = strlen(p);
|
|
if (!len)
|
|
return -EINVAL;
|
|
|
|
/* parse nn% */
|
|
if (p[len - 1] == '%') {
|
|
/* unsigned int max is 4,294,967,295, 10 chars */
|
|
char s_scale[11] = {};
|
|
int ret = 0;
|
|
|
|
if (len > ARRAY_SIZE(s_scale))
|
|
return -EINVAL;
|
|
|
|
memcpy(s_scale, p, len - 1);
|
|
ret = kstrtouint(s_scale, 10, &scratch_scale);
|
|
if (!ret)
|
|
pr_notice("scratch scale is %d%%\n", scratch_scale);
|
|
return ret;
|
|
}
|
|
|
|
/* parse ll[KMG],mm[KMG],nn[KMG] */
|
|
for (i = 0; i < ARRAY_SIZE(sizes); i++) {
|
|
char *endp = p;
|
|
|
|
if (i > 0) {
|
|
if (*p != ',')
|
|
return -EINVAL;
|
|
p += 1;
|
|
}
|
|
|
|
sizes[i] = memparse(p, &endp);
|
|
if (endp == p)
|
|
return -EINVAL;
|
|
p = endp;
|
|
total_size += sizes[i];
|
|
}
|
|
|
|
if (!total_size)
|
|
return -EINVAL;
|
|
|
|
/* The string should be fully consumed by now. */
|
|
if (*p)
|
|
return -EINVAL;
|
|
|
|
scratch_size_lowmem = sizes[0];
|
|
scratch_size_global = sizes[1];
|
|
scratch_size_pernode = sizes[2];
|
|
scratch_scale = 0;
|
|
|
|
pr_notice("scratch areas: lowmem: %lluMiB global: %lluMiB pernode: %lldMiB\n",
|
|
(u64)(scratch_size_lowmem >> 20),
|
|
(u64)(scratch_size_global >> 20),
|
|
(u64)(scratch_size_pernode >> 20));
|
|
|
|
return 0;
|
|
}
|
|
early_param("kho_scratch", kho_parse_scratch_size);
|
|
|
|
static void __init scratch_size_update(void)
|
|
{
|
|
phys_addr_t size;
|
|
|
|
if (!scratch_scale)
|
|
return;
|
|
|
|
size = memblock_reserved_kern_size(ARCH_LOW_ADDRESS_LIMIT,
|
|
NUMA_NO_NODE);
|
|
size = size * scratch_scale / 100;
|
|
scratch_size_lowmem = round_up(size, CMA_MIN_ALIGNMENT_BYTES);
|
|
|
|
size = memblock_reserved_kern_size(MEMBLOCK_ALLOC_ANYWHERE,
|
|
NUMA_NO_NODE);
|
|
size = size * scratch_scale / 100 - scratch_size_lowmem;
|
|
scratch_size_global = round_up(size, CMA_MIN_ALIGNMENT_BYTES);
|
|
}
|
|
|
|
static phys_addr_t __init scratch_size_node(int nid)
|
|
{
|
|
phys_addr_t size;
|
|
|
|
if (scratch_scale) {
|
|
size = memblock_reserved_kern_size(MEMBLOCK_ALLOC_ANYWHERE,
|
|
nid);
|
|
size = size * scratch_scale / 100;
|
|
} else {
|
|
size = scratch_size_pernode;
|
|
}
|
|
|
|
return round_up(size, CMA_MIN_ALIGNMENT_BYTES);
|
|
}
|
|
|
|
/**
|
|
* kho_reserve_scratch - Reserve a contiguous chunk of memory for kexec
|
|
*
|
|
* With KHO we can preserve arbitrary pages in the system. To ensure we still
|
|
* have a large contiguous region of memory when we search the physical address
|
|
* space for target memory, let's make sure we always have a large CMA region
|
|
* active. This CMA region will only be used for movable pages which are not a
|
|
* problem for us during KHO because we can just move them somewhere else.
|
|
*/
|
|
static void __init kho_reserve_scratch(void)
|
|
{
|
|
phys_addr_t addr, size;
|
|
int nid, i = 0;
|
|
|
|
if (!kho_enable)
|
|
return;
|
|
|
|
scratch_size_update();
|
|
|
|
/* FIXME: deal with node hot-plug/remove */
|
|
kho_scratch_cnt = num_online_nodes() + 2;
|
|
size = kho_scratch_cnt * sizeof(*kho_scratch);
|
|
kho_scratch = memblock_alloc(size, PAGE_SIZE);
|
|
if (!kho_scratch)
|
|
goto err_disable_kho;
|
|
|
|
/*
|
|
* reserve scratch area in low memory for lowmem allocations in the
|
|
* next kernel
|
|
*/
|
|
size = scratch_size_lowmem;
|
|
addr = memblock_phys_alloc_range(size, CMA_MIN_ALIGNMENT_BYTES, 0,
|
|
ARCH_LOW_ADDRESS_LIMIT);
|
|
if (!addr)
|
|
goto err_free_scratch_desc;
|
|
|
|
kho_scratch[i].addr = addr;
|
|
kho_scratch[i].size = size;
|
|
i++;
|
|
|
|
/* reserve large contiguous area for allocations without nid */
|
|
size = scratch_size_global;
|
|
addr = memblock_phys_alloc(size, CMA_MIN_ALIGNMENT_BYTES);
|
|
if (!addr)
|
|
goto err_free_scratch_areas;
|
|
|
|
kho_scratch[i].addr = addr;
|
|
kho_scratch[i].size = size;
|
|
i++;
|
|
|
|
for_each_online_node(nid) {
|
|
size = scratch_size_node(nid);
|
|
addr = memblock_alloc_range_nid(size, CMA_MIN_ALIGNMENT_BYTES,
|
|
0, MEMBLOCK_ALLOC_ACCESSIBLE,
|
|
nid, true);
|
|
if (!addr)
|
|
goto err_free_scratch_areas;
|
|
|
|
kho_scratch[i].addr = addr;
|
|
kho_scratch[i].size = size;
|
|
i++;
|
|
}
|
|
|
|
return;
|
|
|
|
err_free_scratch_areas:
|
|
for (i--; i >= 0; i--)
|
|
memblock_phys_free(kho_scratch[i].addr, kho_scratch[i].size);
|
|
err_free_scratch_desc:
|
|
memblock_free(kho_scratch, kho_scratch_cnt * sizeof(*kho_scratch));
|
|
err_disable_kho:
|
|
pr_warn("Failed to reserve scratch area, disabling kexec handover\n");
|
|
kho_enable = false;
|
|
}
|
|
|
|
struct fdt_debugfs {
|
|
struct list_head list;
|
|
struct debugfs_blob_wrapper wrapper;
|
|
struct dentry *file;
|
|
};
|
|
|
|
static int kho_debugfs_fdt_add(struct list_head *list, struct dentry *dir,
|
|
const char *name, const void *fdt)
|
|
{
|
|
struct fdt_debugfs *f;
|
|
struct dentry *file;
|
|
|
|
f = kmalloc(sizeof(*f), GFP_KERNEL);
|
|
if (!f)
|
|
return -ENOMEM;
|
|
|
|
f->wrapper.data = (void *)fdt;
|
|
f->wrapper.size = fdt_totalsize(fdt);
|
|
|
|
file = debugfs_create_blob(name, 0400, dir, &f->wrapper);
|
|
if (IS_ERR(file)) {
|
|
kfree(f);
|
|
return PTR_ERR(file);
|
|
}
|
|
|
|
f->file = file;
|
|
list_add(&f->list, list);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* kho_add_subtree - record the physical address of a sub FDT in KHO root tree.
|
|
* @ser: serialization control object passed by KHO notifiers.
|
|
* @name: name of the sub tree.
|
|
* @fdt: the sub tree blob.
|
|
*
|
|
* Creates a new child node named @name in KHO root FDT and records
|
|
* the physical address of @fdt. The pages of @fdt must also be preserved
|
|
* by KHO for the new kernel to retrieve it after kexec.
|
|
*
|
|
* A debugfs blob entry is also created at
|
|
* ``/sys/kernel/debug/kho/out/sub_fdts/@name``.
|
|
*
|
|
* Return: 0 on success, error code on failure
|
|
*/
|
|
int kho_add_subtree(struct kho_serialization *ser, const char *name, void *fdt)
|
|
{
|
|
int err = 0;
|
|
u64 phys = (u64)virt_to_phys(fdt);
|
|
void *root = page_to_virt(ser->fdt);
|
|
|
|
err |= fdt_begin_node(root, name);
|
|
err |= fdt_property(root, PROP_SUB_FDT, &phys, sizeof(phys));
|
|
err |= fdt_end_node(root);
|
|
|
|
if (err)
|
|
return err;
|
|
|
|
return kho_debugfs_fdt_add(&ser->fdt_list, ser->sub_fdt_dir, name, fdt);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kho_add_subtree);
|
|
|
|
int register_kho_notifier(struct notifier_block *nb)
|
|
{
|
|
return blocking_notifier_chain_register(&kho_out.chain_head, nb);
|
|
}
|
|
EXPORT_SYMBOL_GPL(register_kho_notifier);
|
|
|
|
int unregister_kho_notifier(struct notifier_block *nb)
|
|
{
|
|
return blocking_notifier_chain_unregister(&kho_out.chain_head, nb);
|
|
}
|
|
EXPORT_SYMBOL_GPL(unregister_kho_notifier);
|
|
|
|
/**
|
|
* kho_preserve_folio - preserve a folio across kexec.
|
|
* @folio: folio to preserve.
|
|
*
|
|
* Instructs KHO to preserve the whole folio across kexec. The order
|
|
* will be preserved as well.
|
|
*
|
|
* Return: 0 on success, error code on failure
|
|
*/
|
|
int kho_preserve_folio(struct folio *folio)
|
|
{
|
|
const unsigned long pfn = folio_pfn(folio);
|
|
const unsigned int order = folio_order(folio);
|
|
struct kho_mem_track *track = &kho_out.ser.track;
|
|
|
|
if (WARN_ON(kho_scratch_overlap(pfn << PAGE_SHIFT, PAGE_SIZE << order)))
|
|
return -EINVAL;
|
|
|
|
return __kho_preserve_order(track, pfn, order);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kho_preserve_folio);
|
|
|
|
/**
|
|
* kho_preserve_pages - preserve contiguous pages across kexec
|
|
* @page: first page in the list.
|
|
* @nr_pages: number of pages.
|
|
*
|
|
* Preserve a contiguous list of order 0 pages. Must be restored using
|
|
* kho_restore_pages() to ensure the pages are restored properly as order 0.
|
|
*
|
|
* Return: 0 on success, error code on failure
|
|
*/
|
|
int kho_preserve_pages(struct page *page, unsigned int nr_pages)
|
|
{
|
|
struct kho_mem_track *track = &kho_out.ser.track;
|
|
const unsigned long start_pfn = page_to_pfn(page);
|
|
const unsigned long end_pfn = start_pfn + nr_pages;
|
|
unsigned long pfn = start_pfn;
|
|
unsigned long failed_pfn = 0;
|
|
int err = 0;
|
|
|
|
if (WARN_ON(kho_scratch_overlap(start_pfn << PAGE_SHIFT,
|
|
nr_pages << PAGE_SHIFT))) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
while (pfn < end_pfn) {
|
|
const unsigned int order =
|
|
min(count_trailing_zeros(pfn), ilog2(end_pfn - pfn));
|
|
|
|
err = __kho_preserve_order(track, pfn, order);
|
|
if (err) {
|
|
failed_pfn = pfn;
|
|
break;
|
|
}
|
|
|
|
pfn += 1 << order;
|
|
}
|
|
|
|
if (err)
|
|
__kho_unpreserve(track, start_pfn, failed_pfn);
|
|
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kho_preserve_pages);
|
|
|
|
struct kho_vmalloc_hdr {
|
|
DECLARE_KHOSER_PTR(next, struct kho_vmalloc_chunk *);
|
|
};
|
|
|
|
#define KHO_VMALLOC_SIZE \
|
|
((PAGE_SIZE - sizeof(struct kho_vmalloc_hdr)) / \
|
|
sizeof(phys_addr_t))
|
|
|
|
struct kho_vmalloc_chunk {
|
|
struct kho_vmalloc_hdr hdr;
|
|
phys_addr_t phys[KHO_VMALLOC_SIZE];
|
|
};
|
|
|
|
static_assert(sizeof(struct kho_vmalloc_chunk) == PAGE_SIZE);
|
|
|
|
/* vmalloc flags KHO supports */
|
|
#define KHO_VMALLOC_SUPPORTED_FLAGS (VM_ALLOC | VM_ALLOW_HUGE_VMAP)
|
|
|
|
/* KHO internal flags for vmalloc preservations */
|
|
#define KHO_VMALLOC_ALLOC 0x0001
|
|
#define KHO_VMALLOC_HUGE_VMAP 0x0002
|
|
|
|
static unsigned short vmalloc_flags_to_kho(unsigned int vm_flags)
|
|
{
|
|
unsigned short kho_flags = 0;
|
|
|
|
if (vm_flags & VM_ALLOC)
|
|
kho_flags |= KHO_VMALLOC_ALLOC;
|
|
if (vm_flags & VM_ALLOW_HUGE_VMAP)
|
|
kho_flags |= KHO_VMALLOC_HUGE_VMAP;
|
|
|
|
return kho_flags;
|
|
}
|
|
|
|
static unsigned int kho_flags_to_vmalloc(unsigned short kho_flags)
|
|
{
|
|
unsigned int vm_flags = 0;
|
|
|
|
if (kho_flags & KHO_VMALLOC_ALLOC)
|
|
vm_flags |= VM_ALLOC;
|
|
if (kho_flags & KHO_VMALLOC_HUGE_VMAP)
|
|
vm_flags |= VM_ALLOW_HUGE_VMAP;
|
|
|
|
return vm_flags;
|
|
}
|
|
|
|
static struct kho_vmalloc_chunk *new_vmalloc_chunk(struct kho_vmalloc_chunk *cur)
|
|
{
|
|
struct kho_vmalloc_chunk *chunk;
|
|
int err;
|
|
|
|
chunk = (struct kho_vmalloc_chunk *)get_zeroed_page(GFP_KERNEL);
|
|
if (!chunk)
|
|
return NULL;
|
|
|
|
err = kho_preserve_pages(virt_to_page(chunk), 1);
|
|
if (err)
|
|
goto err_free;
|
|
if (cur)
|
|
KHOSER_STORE_PTR(cur->hdr.next, chunk);
|
|
return chunk;
|
|
|
|
err_free:
|
|
free_page((unsigned long)chunk);
|
|
return NULL;
|
|
}
|
|
|
|
static void kho_vmalloc_unpreserve_chunk(struct kho_vmalloc_chunk *chunk,
|
|
unsigned short order)
|
|
{
|
|
struct kho_mem_track *track = &kho_out.ser.track;
|
|
unsigned long pfn = PHYS_PFN(virt_to_phys(chunk));
|
|
|
|
__kho_unpreserve(track, pfn, pfn + 1);
|
|
|
|
for (int i = 0; i < ARRAY_SIZE(chunk->phys) && chunk->phys[i]; i++) {
|
|
pfn = PHYS_PFN(chunk->phys[i]);
|
|
__kho_unpreserve(track, pfn, pfn + (1 << order));
|
|
}
|
|
}
|
|
|
|
static void kho_vmalloc_free_chunks(struct kho_vmalloc *kho_vmalloc)
|
|
{
|
|
struct kho_vmalloc_chunk *chunk = KHOSER_LOAD_PTR(kho_vmalloc->first);
|
|
|
|
while (chunk) {
|
|
struct kho_vmalloc_chunk *tmp = chunk;
|
|
|
|
kho_vmalloc_unpreserve_chunk(chunk, kho_vmalloc->order);
|
|
|
|
chunk = KHOSER_LOAD_PTR(chunk->hdr.next);
|
|
free_page((unsigned long)tmp);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* kho_preserve_vmalloc - preserve memory allocated with vmalloc() across kexec
|
|
* @ptr: pointer to the area in vmalloc address space
|
|
* @preservation: placeholder for preservation metadata
|
|
*
|
|
* Instructs KHO to preserve the area in vmalloc address space at @ptr. The
|
|
* physical pages mapped at @ptr will be preserved and on successful return
|
|
* @preservation will hold the physical address of a structure that describes
|
|
* the preservation.
|
|
*
|
|
* NOTE: The memory allocated with vmalloc_node() variants cannot be reliably
|
|
* restored on the same node
|
|
*
|
|
* Return: 0 on success, error code on failure
|
|
*/
|
|
int kho_preserve_vmalloc(void *ptr, struct kho_vmalloc *preservation)
|
|
{
|
|
struct kho_vmalloc_chunk *chunk;
|
|
struct vm_struct *vm = find_vm_area(ptr);
|
|
unsigned int order, flags, nr_contig_pages;
|
|
unsigned int idx = 0;
|
|
int err;
|
|
|
|
if (!vm)
|
|
return -EINVAL;
|
|
|
|
if (vm->flags & ~KHO_VMALLOC_SUPPORTED_FLAGS)
|
|
return -EOPNOTSUPP;
|
|
|
|
flags = vmalloc_flags_to_kho(vm->flags);
|
|
order = get_vm_area_page_order(vm);
|
|
|
|
chunk = new_vmalloc_chunk(NULL);
|
|
if (!chunk)
|
|
return -ENOMEM;
|
|
KHOSER_STORE_PTR(preservation->first, chunk);
|
|
|
|
nr_contig_pages = (1 << order);
|
|
for (int i = 0; i < vm->nr_pages; i += nr_contig_pages) {
|
|
phys_addr_t phys = page_to_phys(vm->pages[i]);
|
|
|
|
err = kho_preserve_pages(vm->pages[i], nr_contig_pages);
|
|
if (err)
|
|
goto err_free;
|
|
|
|
chunk->phys[idx++] = phys;
|
|
if (idx == ARRAY_SIZE(chunk->phys)) {
|
|
chunk = new_vmalloc_chunk(chunk);
|
|
if (!chunk)
|
|
goto err_free;
|
|
idx = 0;
|
|
}
|
|
}
|
|
|
|
preservation->total_pages = vm->nr_pages;
|
|
preservation->flags = flags;
|
|
preservation->order = order;
|
|
|
|
return 0;
|
|
|
|
err_free:
|
|
kho_vmalloc_free_chunks(preservation);
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kho_preserve_vmalloc);
|
|
|
|
/**
|
|
* kho_restore_vmalloc - recreates and populates an area in vmalloc address
|
|
* space from the preserved memory.
|
|
* @preservation: preservation metadata.
|
|
*
|
|
* Recreates an area in vmalloc address space and populates it with memory that
|
|
* was preserved using kho_preserve_vmalloc().
|
|
*
|
|
* Return: pointer to the area in the vmalloc address space, NULL on failure.
|
|
*/
|
|
void *kho_restore_vmalloc(const struct kho_vmalloc *preservation)
|
|
{
|
|
struct kho_vmalloc_chunk *chunk = KHOSER_LOAD_PTR(preservation->first);
|
|
unsigned int align, order, shift, vm_flags;
|
|
unsigned long total_pages, contig_pages;
|
|
unsigned long addr, size;
|
|
struct vm_struct *area;
|
|
struct page **pages;
|
|
unsigned int idx = 0;
|
|
int err;
|
|
|
|
vm_flags = kho_flags_to_vmalloc(preservation->flags);
|
|
if (vm_flags & ~KHO_VMALLOC_SUPPORTED_FLAGS)
|
|
return NULL;
|
|
|
|
total_pages = preservation->total_pages;
|
|
pages = kvmalloc_array(total_pages, sizeof(*pages), GFP_KERNEL);
|
|
if (!pages)
|
|
return NULL;
|
|
order = preservation->order;
|
|
contig_pages = (1 << order);
|
|
shift = PAGE_SHIFT + order;
|
|
align = 1 << shift;
|
|
|
|
while (chunk) {
|
|
struct page *page;
|
|
|
|
for (int i = 0; i < ARRAY_SIZE(chunk->phys) && chunk->phys[i]; i++) {
|
|
phys_addr_t phys = chunk->phys[i];
|
|
|
|
if (idx + contig_pages > total_pages)
|
|
goto err_free_pages_array;
|
|
|
|
page = kho_restore_pages(phys, contig_pages);
|
|
if (!page)
|
|
goto err_free_pages_array;
|
|
|
|
for (int j = 0; j < contig_pages; j++)
|
|
pages[idx++] = page;
|
|
|
|
phys += contig_pages * PAGE_SIZE;
|
|
}
|
|
|
|
page = kho_restore_pages(virt_to_phys(chunk), 1);
|
|
if (!page)
|
|
goto err_free_pages_array;
|
|
chunk = KHOSER_LOAD_PTR(chunk->hdr.next);
|
|
__free_page(page);
|
|
}
|
|
|
|
if (idx != total_pages)
|
|
goto err_free_pages_array;
|
|
|
|
area = __get_vm_area_node(total_pages * PAGE_SIZE, align, shift,
|
|
vm_flags, VMALLOC_START, VMALLOC_END,
|
|
NUMA_NO_NODE, GFP_KERNEL,
|
|
__builtin_return_address(0));
|
|
if (!area)
|
|
goto err_free_pages_array;
|
|
|
|
addr = (unsigned long)area->addr;
|
|
size = get_vm_area_size(area);
|
|
err = vmap_pages_range(addr, addr + size, PAGE_KERNEL, pages, shift);
|
|
if (err)
|
|
goto err_free_vm_area;
|
|
|
|
area->nr_pages = total_pages;
|
|
area->pages = pages;
|
|
|
|
return area->addr;
|
|
|
|
err_free_vm_area:
|
|
free_vm_area(area);
|
|
err_free_pages_array:
|
|
kvfree(pages);
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kho_restore_vmalloc);
|
|
|
|
/* Handling for debug/kho/out */
|
|
|
|
static struct dentry *debugfs_root;
|
|
|
|
static int kho_out_update_debugfs_fdt(void)
|
|
{
|
|
int err = 0;
|
|
struct fdt_debugfs *ff, *tmp;
|
|
|
|
if (kho_out.finalized) {
|
|
err = kho_debugfs_fdt_add(&kho_out.ser.fdt_list, kho_out.dir,
|
|
"fdt", page_to_virt(kho_out.ser.fdt));
|
|
} else {
|
|
list_for_each_entry_safe(ff, tmp, &kho_out.ser.fdt_list, list) {
|
|
debugfs_remove(ff->file);
|
|
list_del(&ff->list);
|
|
kfree(ff);
|
|
}
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int kho_abort(void)
|
|
{
|
|
int err;
|
|
unsigned long order;
|
|
struct kho_mem_phys *physxa;
|
|
|
|
xa_for_each(&kho_out.ser.track.orders, order, physxa) {
|
|
struct kho_mem_phys_bits *bits;
|
|
unsigned long phys;
|
|
|
|
xa_for_each(&physxa->phys_bits, phys, bits)
|
|
kfree(bits);
|
|
|
|
xa_destroy(&physxa->phys_bits);
|
|
kfree(physxa);
|
|
}
|
|
xa_destroy(&kho_out.ser.track.orders);
|
|
|
|
if (kho_out.ser.preserved_mem_map) {
|
|
kho_mem_ser_free(kho_out.ser.preserved_mem_map);
|
|
kho_out.ser.preserved_mem_map = NULL;
|
|
}
|
|
|
|
err = blocking_notifier_call_chain(&kho_out.chain_head, KEXEC_KHO_ABORT,
|
|
NULL);
|
|
err = notifier_to_errno(err);
|
|
|
|
if (err)
|
|
pr_err("Failed to abort KHO finalization: %d\n", err);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int kho_finalize(void)
|
|
{
|
|
int err = 0;
|
|
u64 *preserved_mem_map;
|
|
void *fdt = page_to_virt(kho_out.ser.fdt);
|
|
|
|
err |= fdt_create(fdt, PAGE_SIZE);
|
|
err |= fdt_finish_reservemap(fdt);
|
|
err |= fdt_begin_node(fdt, "");
|
|
err |= fdt_property_string(fdt, "compatible", KHO_FDT_COMPATIBLE);
|
|
/**
|
|
* Reserve the preserved-memory-map property in the root FDT, so
|
|
* that all property definitions will precede subnodes created by
|
|
* KHO callers.
|
|
*/
|
|
err |= fdt_property_placeholder(fdt, PROP_PRESERVED_MEMORY_MAP,
|
|
sizeof(*preserved_mem_map),
|
|
(void **)&preserved_mem_map);
|
|
if (err)
|
|
goto abort;
|
|
|
|
err = kho_preserve_folio(page_folio(kho_out.ser.fdt));
|
|
if (err)
|
|
goto abort;
|
|
|
|
err = blocking_notifier_call_chain(&kho_out.chain_head,
|
|
KEXEC_KHO_FINALIZE, &kho_out.ser);
|
|
err = notifier_to_errno(err);
|
|
if (err)
|
|
goto abort;
|
|
|
|
err = kho_mem_serialize(&kho_out.ser);
|
|
if (err)
|
|
goto abort;
|
|
|
|
*preserved_mem_map = (u64)virt_to_phys(kho_out.ser.preserved_mem_map);
|
|
|
|
err |= fdt_end_node(fdt);
|
|
err |= fdt_finish(fdt);
|
|
|
|
abort:
|
|
if (err) {
|
|
pr_err("Failed to convert KHO state tree: %d\n", err);
|
|
kho_abort();
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int kho_out_finalize_get(void *data, u64 *val)
|
|
{
|
|
mutex_lock(&kho_out.lock);
|
|
*val = kho_out.finalized;
|
|
mutex_unlock(&kho_out.lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kho_out_finalize_set(void *data, u64 _val)
|
|
{
|
|
int ret = 0;
|
|
bool val = !!_val;
|
|
|
|
mutex_lock(&kho_out.lock);
|
|
|
|
if (val == kho_out.finalized) {
|
|
if (kho_out.finalized)
|
|
ret = -EEXIST;
|
|
else
|
|
ret = -ENOENT;
|
|
goto unlock;
|
|
}
|
|
|
|
if (val)
|
|
ret = kho_finalize();
|
|
else
|
|
ret = kho_abort();
|
|
|
|
if (ret)
|
|
goto unlock;
|
|
|
|
kho_out.finalized = val;
|
|
ret = kho_out_update_debugfs_fdt();
|
|
|
|
unlock:
|
|
mutex_unlock(&kho_out.lock);
|
|
return ret;
|
|
}
|
|
|
|
DEFINE_DEBUGFS_ATTRIBUTE(fops_kho_out_finalize, kho_out_finalize_get,
|
|
kho_out_finalize_set, "%llu\n");
|
|
|
|
static int scratch_phys_show(struct seq_file *m, void *v)
|
|
{
|
|
for (int i = 0; i < kho_scratch_cnt; i++)
|
|
seq_printf(m, "0x%llx\n", kho_scratch[i].addr);
|
|
|
|
return 0;
|
|
}
|
|
DEFINE_SHOW_ATTRIBUTE(scratch_phys);
|
|
|
|
static int scratch_len_show(struct seq_file *m, void *v)
|
|
{
|
|
for (int i = 0; i < kho_scratch_cnt; i++)
|
|
seq_printf(m, "0x%llx\n", kho_scratch[i].size);
|
|
|
|
return 0;
|
|
}
|
|
DEFINE_SHOW_ATTRIBUTE(scratch_len);
|
|
|
|
static __init int kho_out_debugfs_init(void)
|
|
{
|
|
struct dentry *dir, *f, *sub_fdt_dir;
|
|
|
|
dir = debugfs_create_dir("out", debugfs_root);
|
|
if (IS_ERR(dir))
|
|
return -ENOMEM;
|
|
|
|
sub_fdt_dir = debugfs_create_dir("sub_fdts", dir);
|
|
if (IS_ERR(sub_fdt_dir))
|
|
goto err_rmdir;
|
|
|
|
f = debugfs_create_file("scratch_phys", 0400, dir, NULL,
|
|
&scratch_phys_fops);
|
|
if (IS_ERR(f))
|
|
goto err_rmdir;
|
|
|
|
f = debugfs_create_file("scratch_len", 0400, dir, NULL,
|
|
&scratch_len_fops);
|
|
if (IS_ERR(f))
|
|
goto err_rmdir;
|
|
|
|
f = debugfs_create_file("finalize", 0600, dir, NULL,
|
|
&fops_kho_out_finalize);
|
|
if (IS_ERR(f))
|
|
goto err_rmdir;
|
|
|
|
kho_out.dir = dir;
|
|
kho_out.ser.sub_fdt_dir = sub_fdt_dir;
|
|
return 0;
|
|
|
|
err_rmdir:
|
|
debugfs_remove_recursive(dir);
|
|
return -ENOENT;
|
|
}
|
|
|
|
struct kho_in {
|
|
struct dentry *dir;
|
|
phys_addr_t fdt_phys;
|
|
phys_addr_t scratch_phys;
|
|
struct list_head fdt_list;
|
|
};
|
|
|
|
static struct kho_in kho_in = {
|
|
.fdt_list = LIST_HEAD_INIT(kho_in.fdt_list),
|
|
};
|
|
|
|
static const void *kho_get_fdt(void)
|
|
{
|
|
return kho_in.fdt_phys ? phys_to_virt(kho_in.fdt_phys) : NULL;
|
|
}
|
|
|
|
/**
|
|
* is_kho_boot - check if current kernel was booted via KHO-enabled
|
|
* kexec
|
|
*
|
|
* This function checks if the current kernel was loaded through a kexec
|
|
* operation with KHO enabled, by verifying that a valid KHO FDT
|
|
* was passed.
|
|
*
|
|
* Note: This function returns reliable results only after
|
|
* kho_populate() has been called during early boot. Before that,
|
|
* it may return false even if KHO data is present.
|
|
*
|
|
* Return: true if booted via KHO-enabled kexec, false otherwise
|
|
*/
|
|
bool is_kho_boot(void)
|
|
{
|
|
return !!kho_get_fdt();
|
|
}
|
|
EXPORT_SYMBOL_GPL(is_kho_boot);
|
|
|
|
/**
|
|
* kho_retrieve_subtree - retrieve a preserved sub FDT by its name.
|
|
* @name: the name of the sub FDT passed to kho_add_subtree().
|
|
* @phys: if found, the physical address of the sub FDT is stored in @phys.
|
|
*
|
|
* Retrieve a preserved sub FDT named @name and store its physical
|
|
* address in @phys.
|
|
*
|
|
* Return: 0 on success, error code on failure
|
|
*/
|
|
int kho_retrieve_subtree(const char *name, phys_addr_t *phys)
|
|
{
|
|
const void *fdt = kho_get_fdt();
|
|
const u64 *val;
|
|
int offset, len;
|
|
|
|
if (!fdt)
|
|
return -ENOENT;
|
|
|
|
if (!phys)
|
|
return -EINVAL;
|
|
|
|
offset = fdt_subnode_offset(fdt, 0, name);
|
|
if (offset < 0)
|
|
return -ENOENT;
|
|
|
|
val = fdt_getprop(fdt, offset, PROP_SUB_FDT, &len);
|
|
if (!val || len != sizeof(*val))
|
|
return -EINVAL;
|
|
|
|
*phys = (phys_addr_t)*val;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kho_retrieve_subtree);
|
|
|
|
/* Handling for debugfs/kho/in */
|
|
|
|
static __init int kho_in_debugfs_init(const void *fdt)
|
|
{
|
|
struct dentry *sub_fdt_dir;
|
|
int err, child;
|
|
|
|
kho_in.dir = debugfs_create_dir("in", debugfs_root);
|
|
if (IS_ERR(kho_in.dir))
|
|
return PTR_ERR(kho_in.dir);
|
|
|
|
sub_fdt_dir = debugfs_create_dir("sub_fdts", kho_in.dir);
|
|
if (IS_ERR(sub_fdt_dir)) {
|
|
err = PTR_ERR(sub_fdt_dir);
|
|
goto err_rmdir;
|
|
}
|
|
|
|
err = kho_debugfs_fdt_add(&kho_in.fdt_list, kho_in.dir, "fdt", fdt);
|
|
if (err)
|
|
goto err_rmdir;
|
|
|
|
fdt_for_each_subnode(child, fdt, 0) {
|
|
int len = 0;
|
|
const char *name = fdt_get_name(fdt, child, NULL);
|
|
const u64 *fdt_phys;
|
|
|
|
fdt_phys = fdt_getprop(fdt, child, "fdt", &len);
|
|
if (!fdt_phys)
|
|
continue;
|
|
if (len != sizeof(*fdt_phys)) {
|
|
pr_warn("node `%s`'s prop `fdt` has invalid length: %d\n",
|
|
name, len);
|
|
continue;
|
|
}
|
|
err = kho_debugfs_fdt_add(&kho_in.fdt_list, sub_fdt_dir, name,
|
|
phys_to_virt(*fdt_phys));
|
|
if (err) {
|
|
pr_warn("failed to add fdt `%s` to debugfs: %d\n", name,
|
|
err);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_rmdir:
|
|
debugfs_remove_recursive(kho_in.dir);
|
|
return err;
|
|
}
|
|
|
|
static __init int kho_init(void)
|
|
{
|
|
int err = 0;
|
|
const void *fdt = kho_get_fdt();
|
|
|
|
if (!kho_enable)
|
|
return 0;
|
|
|
|
kho_out.ser.fdt = alloc_page(GFP_KERNEL);
|
|
if (!kho_out.ser.fdt) {
|
|
err = -ENOMEM;
|
|
goto err_free_scratch;
|
|
}
|
|
|
|
debugfs_root = debugfs_create_dir("kho", NULL);
|
|
if (IS_ERR(debugfs_root)) {
|
|
err = -ENOENT;
|
|
goto err_free_fdt;
|
|
}
|
|
|
|
err = kho_out_debugfs_init();
|
|
if (err)
|
|
goto err_free_fdt;
|
|
|
|
if (fdt) {
|
|
err = kho_in_debugfs_init(fdt);
|
|
/*
|
|
* Failure to create /sys/kernel/debug/kho/in does not prevent
|
|
* reviving state from KHO and setting up KHO for the next
|
|
* kexec.
|
|
*/
|
|
if (err)
|
|
pr_err("failed exposing handover FDT in debugfs: %d\n",
|
|
err);
|
|
|
|
return 0;
|
|
}
|
|
|
|
for (int i = 0; i < kho_scratch_cnt; i++) {
|
|
unsigned long base_pfn = PHYS_PFN(kho_scratch[i].addr);
|
|
unsigned long count = kho_scratch[i].size >> PAGE_SHIFT;
|
|
unsigned long pfn;
|
|
|
|
for (pfn = base_pfn; pfn < base_pfn + count;
|
|
pfn += pageblock_nr_pages)
|
|
init_cma_reserved_pageblock(pfn_to_page(pfn));
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_free_fdt:
|
|
put_page(kho_out.ser.fdt);
|
|
kho_out.ser.fdt = NULL;
|
|
err_free_scratch:
|
|
for (int i = 0; i < kho_scratch_cnt; i++) {
|
|
void *start = __va(kho_scratch[i].addr);
|
|
void *end = start + kho_scratch[i].size;
|
|
|
|
free_reserved_area(start, end, -1, "");
|
|
}
|
|
kho_enable = false;
|
|
return err;
|
|
}
|
|
late_initcall(kho_init);
|
|
|
|
static void __init kho_release_scratch(void)
|
|
{
|
|
phys_addr_t start, end;
|
|
u64 i;
|
|
|
|
memmap_init_kho_scratch_pages();
|
|
|
|
/*
|
|
* Mark scratch mem as CMA before we return it. That way we
|
|
* ensure that no kernel allocations happen on it. That means
|
|
* we can reuse it as scratch memory again later.
|
|
*/
|
|
__for_each_mem_range(i, &memblock.memory, NULL, NUMA_NO_NODE,
|
|
MEMBLOCK_KHO_SCRATCH, &start, &end, NULL) {
|
|
ulong start_pfn = pageblock_start_pfn(PFN_DOWN(start));
|
|
ulong end_pfn = pageblock_align(PFN_UP(end));
|
|
ulong pfn;
|
|
|
|
for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages)
|
|
init_pageblock_migratetype(pfn_to_page(pfn),
|
|
MIGRATE_CMA, false);
|
|
}
|
|
}
|
|
|
|
void __init kho_memory_init(void)
|
|
{
|
|
struct folio *folio;
|
|
|
|
if (kho_in.scratch_phys) {
|
|
kho_scratch = phys_to_virt(kho_in.scratch_phys);
|
|
kho_release_scratch();
|
|
|
|
kho_mem_deserialize(kho_get_fdt());
|
|
folio = kho_restore_folio(kho_in.fdt_phys);
|
|
if (!folio)
|
|
pr_warn("failed to restore folio for KHO fdt\n");
|
|
} else {
|
|
kho_reserve_scratch();
|
|
}
|
|
}
|
|
|
|
void __init kho_populate(phys_addr_t fdt_phys, u64 fdt_len,
|
|
phys_addr_t scratch_phys, u64 scratch_len)
|
|
{
|
|
void *fdt = NULL;
|
|
struct kho_scratch *scratch = NULL;
|
|
int err = 0;
|
|
unsigned int scratch_cnt = scratch_len / sizeof(*kho_scratch);
|
|
|
|
/* Validate the input FDT */
|
|
fdt = early_memremap(fdt_phys, fdt_len);
|
|
if (!fdt) {
|
|
pr_warn("setup: failed to memremap FDT (0x%llx)\n", fdt_phys);
|
|
err = -EFAULT;
|
|
goto out;
|
|
}
|
|
err = fdt_check_header(fdt);
|
|
if (err) {
|
|
pr_warn("setup: handover FDT (0x%llx) is invalid: %d\n",
|
|
fdt_phys, err);
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
err = fdt_node_check_compatible(fdt, 0, KHO_FDT_COMPATIBLE);
|
|
if (err) {
|
|
pr_warn("setup: handover FDT (0x%llx) is incompatible with '%s': %d\n",
|
|
fdt_phys, KHO_FDT_COMPATIBLE, err);
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
scratch = early_memremap(scratch_phys, scratch_len);
|
|
if (!scratch) {
|
|
pr_warn("setup: failed to memremap scratch (phys=0x%llx, len=%lld)\n",
|
|
scratch_phys, scratch_len);
|
|
err = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* We pass a safe contiguous blocks of memory to use for early boot
|
|
* purporses from the previous kernel so that we can resize the
|
|
* memblock array as needed.
|
|
*/
|
|
for (int i = 0; i < scratch_cnt; i++) {
|
|
struct kho_scratch *area = &scratch[i];
|
|
u64 size = area->size;
|
|
|
|
memblock_add(area->addr, size);
|
|
err = memblock_mark_kho_scratch(area->addr, size);
|
|
if (WARN_ON(err)) {
|
|
pr_warn("failed to mark the scratch region 0x%pa+0x%pa: %d",
|
|
&area->addr, &size, err);
|
|
goto out;
|
|
}
|
|
pr_debug("Marked 0x%pa+0x%pa as scratch", &area->addr, &size);
|
|
}
|
|
|
|
memblock_reserve(scratch_phys, scratch_len);
|
|
|
|
/*
|
|
* Now that we have a viable region of scratch memory, let's tell
|
|
* the memblocks allocator to only use that for any allocations.
|
|
* That way we ensure that nothing scribbles over in use data while
|
|
* we initialize the page tables which we will need to ingest all
|
|
* memory reservations from the previous kernel.
|
|
*/
|
|
memblock_set_kho_scratch_only();
|
|
|
|
kho_in.fdt_phys = fdt_phys;
|
|
kho_in.scratch_phys = scratch_phys;
|
|
kho_scratch_cnt = scratch_cnt;
|
|
pr_info("found kexec handover data. Will skip init for some devices\n");
|
|
|
|
out:
|
|
if (fdt)
|
|
early_memunmap(fdt, fdt_len);
|
|
if (scratch)
|
|
early_memunmap(scratch, scratch_len);
|
|
if (err)
|
|
pr_warn("disabling KHO revival: %d\n", err);
|
|
}
|
|
|
|
/* Helper functions for kexec_file_load */
|
|
|
|
int kho_fill_kimage(struct kimage *image)
|
|
{
|
|
ssize_t scratch_size;
|
|
int err = 0;
|
|
struct kexec_buf scratch;
|
|
|
|
if (!kho_out.finalized)
|
|
return 0;
|
|
|
|
image->kho.fdt = page_to_phys(kho_out.ser.fdt);
|
|
|
|
scratch_size = sizeof(*kho_scratch) * kho_scratch_cnt;
|
|
scratch = (struct kexec_buf){
|
|
.image = image,
|
|
.buffer = kho_scratch,
|
|
.bufsz = scratch_size,
|
|
.mem = KEXEC_BUF_MEM_UNKNOWN,
|
|
.memsz = scratch_size,
|
|
.buf_align = SZ_64K, /* Makes it easier to map */
|
|
.buf_max = ULONG_MAX,
|
|
.top_down = true,
|
|
};
|
|
err = kexec_add_buffer(&scratch);
|
|
if (err)
|
|
return err;
|
|
image->kho.scratch = &image->segment[image->nr_segments - 1];
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kho_walk_scratch(struct kexec_buf *kbuf,
|
|
int (*func)(struct resource *, void *))
|
|
{
|
|
int ret = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < kho_scratch_cnt; i++) {
|
|
struct resource res = {
|
|
.start = kho_scratch[i].addr,
|
|
.end = kho_scratch[i].addr + kho_scratch[i].size - 1,
|
|
};
|
|
|
|
/* Try to fit the kimage into our KHO scratch region */
|
|
ret = func(&res, kbuf);
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int kho_locate_mem_hole(struct kexec_buf *kbuf,
|
|
int (*func)(struct resource *, void *))
|
|
{
|
|
int ret;
|
|
|
|
if (!kho_enable || kbuf->image->type == KEXEC_TYPE_CRASH)
|
|
return 1;
|
|
|
|
ret = kho_walk_scratch(kbuf, func);
|
|
|
|
return ret == 1 ? 0 : -EADDRNOTAVAIL;
|
|
}
|