mirror of
https://github.com/torvalds/linux.git
synced 2025-11-30 23:16:01 +07:00
Since commit78524b05f1("mm, swap: avoid redundant swap device pinning"), the common helper for allocating and preparing a folio in the swap cache layer no longer tries to get a swap device reference internally, because all callers of __read_swap_cache_async are already holding a swap entry reference. The repeated swap device pinning isn't needed on the same swap device. Caller of VMA readahead is also holding a reference to the target entry's swap device, but VMA readahead walks the page table, so it might encounter swap entries from other devices, and call __read_swap_cache_async on another device without holding a reference to it. So it is possible to cause a UAF when swapoff of device A raced with swapin on device B, and VMA readahead tries to read swap entries from device A. It's not easy to trigger, but in theory, it could cause real issues. Make VMA readahead try to get the device reference first if the swap device is a different one from the target entry. Link: https://lkml.kernel.org/r/20251111-swap-fix-vma-uaf-v1-1-41c660e58562@tencent.com Fixes:78524b05f1("mm, swap: avoid redundant swap device pinning") Suggested-by: Huang Ying <ying.huang@linux.alibaba.com> Signed-off-by: Kairui Song <kasong@tencent.com> Acked-by: Chris Li <chrisl@kernel.org> Cc: Baoquan He <bhe@redhat.com> Cc: Barry Song <baohua@kernel.org> Cc: Kemeng Shi <shikemeng@huaweicloud.com> Cc: Nhat Pham <nphamcs@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
886 lines
25 KiB
C
886 lines
25 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* linux/mm/swap_state.c
|
|
*
|
|
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
|
|
* Swap reorganised 29.12.95, Stephen Tweedie
|
|
*
|
|
* Rewritten to use page cache, (C) 1998 Stephen Tweedie
|
|
*/
|
|
#include <linux/mm.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/mempolicy.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/swapops.h>
|
|
#include <linux/init.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/migrate.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/huge_mm.h>
|
|
#include <linux/shmem_fs.h>
|
|
#include "internal.h"
|
|
#include "swap_table.h"
|
|
#include "swap.h"
|
|
|
|
/*
|
|
* swapper_space is a fiction, retained to simplify the path through
|
|
* vmscan's shrink_folio_list.
|
|
*/
|
|
static const struct address_space_operations swap_aops = {
|
|
.dirty_folio = noop_dirty_folio,
|
|
#ifdef CONFIG_MIGRATION
|
|
.migrate_folio = migrate_folio,
|
|
#endif
|
|
};
|
|
|
|
/* Set swap_space as read only as swap cache is handled by swap table */
|
|
struct address_space swap_space __ro_after_init = {
|
|
.a_ops = &swap_aops,
|
|
};
|
|
|
|
static bool enable_vma_readahead __read_mostly = true;
|
|
|
|
#define SWAP_RA_ORDER_CEILING 5
|
|
|
|
#define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2)
|
|
#define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1)
|
|
#define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK
|
|
#define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK)
|
|
|
|
#define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK)
|
|
#define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
|
|
#define SWAP_RA_ADDR(v) ((v) & PAGE_MASK)
|
|
|
|
#define SWAP_RA_VAL(addr, win, hits) \
|
|
(((addr) & PAGE_MASK) | \
|
|
(((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \
|
|
((hits) & SWAP_RA_HITS_MASK))
|
|
|
|
/* Initial readahead hits is 4 to start up with a small window */
|
|
#define GET_SWAP_RA_VAL(vma) \
|
|
(atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
|
|
|
|
static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
|
|
|
|
void show_swap_cache_info(void)
|
|
{
|
|
printk("%lu pages in swap cache\n", total_swapcache_pages());
|
|
printk("Free swap = %ldkB\n", K(get_nr_swap_pages()));
|
|
printk("Total swap = %lukB\n", K(total_swap_pages));
|
|
}
|
|
|
|
/**
|
|
* swap_cache_get_folio - Looks up a folio in the swap cache.
|
|
* @entry: swap entry used for the lookup.
|
|
*
|
|
* A found folio will be returned unlocked and with its refcount increased.
|
|
*
|
|
* Context: Caller must ensure @entry is valid and protect the swap device
|
|
* with reference count or locks.
|
|
* Return: Returns the found folio on success, NULL otherwise. The caller
|
|
* must lock nd check if the folio still matches the swap entry before
|
|
* use (e.g., folio_matches_swap_entry).
|
|
*/
|
|
struct folio *swap_cache_get_folio(swp_entry_t entry)
|
|
{
|
|
unsigned long swp_tb;
|
|
struct folio *folio;
|
|
|
|
for (;;) {
|
|
swp_tb = swap_table_get(__swap_entry_to_cluster(entry),
|
|
swp_cluster_offset(entry));
|
|
if (!swp_tb_is_folio(swp_tb))
|
|
return NULL;
|
|
folio = swp_tb_to_folio(swp_tb);
|
|
if (likely(folio_try_get(folio)))
|
|
return folio;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* swap_cache_get_shadow - Looks up a shadow in the swap cache.
|
|
* @entry: swap entry used for the lookup.
|
|
*
|
|
* Context: Caller must ensure @entry is valid and protect the swap device
|
|
* with reference count or locks.
|
|
* Return: Returns either NULL or an XA_VALUE (shadow).
|
|
*/
|
|
void *swap_cache_get_shadow(swp_entry_t entry)
|
|
{
|
|
unsigned long swp_tb;
|
|
|
|
swp_tb = swap_table_get(__swap_entry_to_cluster(entry),
|
|
swp_cluster_offset(entry));
|
|
if (swp_tb_is_shadow(swp_tb))
|
|
return swp_tb_to_shadow(swp_tb);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* swap_cache_add_folio - Add a folio into the swap cache.
|
|
* @folio: The folio to be added.
|
|
* @entry: The swap entry corresponding to the folio.
|
|
* @gfp: gfp_mask for XArray node allocation.
|
|
* @shadowp: If a shadow is found, return the shadow.
|
|
*
|
|
* Context: Caller must ensure @entry is valid and protect the swap device
|
|
* with reference count or locks.
|
|
* The caller also needs to update the corresponding swap_map slots with
|
|
* SWAP_HAS_CACHE bit to avoid race or conflict.
|
|
*/
|
|
void swap_cache_add_folio(struct folio *folio, swp_entry_t entry, void **shadowp)
|
|
{
|
|
void *shadow = NULL;
|
|
unsigned long old_tb, new_tb;
|
|
struct swap_cluster_info *ci;
|
|
unsigned int ci_start, ci_off, ci_end;
|
|
unsigned long nr_pages = folio_nr_pages(folio);
|
|
|
|
VM_WARN_ON_ONCE_FOLIO(!folio_test_locked(folio), folio);
|
|
VM_WARN_ON_ONCE_FOLIO(folio_test_swapcache(folio), folio);
|
|
VM_WARN_ON_ONCE_FOLIO(!folio_test_swapbacked(folio), folio);
|
|
|
|
new_tb = folio_to_swp_tb(folio);
|
|
ci_start = swp_cluster_offset(entry);
|
|
ci_end = ci_start + nr_pages;
|
|
ci_off = ci_start;
|
|
ci = swap_cluster_lock(__swap_entry_to_info(entry), swp_offset(entry));
|
|
do {
|
|
old_tb = __swap_table_xchg(ci, ci_off, new_tb);
|
|
WARN_ON_ONCE(swp_tb_is_folio(old_tb));
|
|
if (swp_tb_is_shadow(old_tb))
|
|
shadow = swp_tb_to_shadow(old_tb);
|
|
} while (++ci_off < ci_end);
|
|
|
|
folio_ref_add(folio, nr_pages);
|
|
folio_set_swapcache(folio);
|
|
folio->swap = entry;
|
|
swap_cluster_unlock(ci);
|
|
|
|
node_stat_mod_folio(folio, NR_FILE_PAGES, nr_pages);
|
|
lruvec_stat_mod_folio(folio, NR_SWAPCACHE, nr_pages);
|
|
|
|
if (shadowp)
|
|
*shadowp = shadow;
|
|
}
|
|
|
|
/**
|
|
* __swap_cache_del_folio - Removes a folio from the swap cache.
|
|
* @ci: The locked swap cluster.
|
|
* @folio: The folio.
|
|
* @entry: The first swap entry that the folio corresponds to.
|
|
* @shadow: shadow value to be filled in the swap cache.
|
|
*
|
|
* Removes a folio from the swap cache and fills a shadow in place.
|
|
* This won't put the folio's refcount. The caller has to do that.
|
|
*
|
|
* Context: Caller must ensure the folio is locked and in the swap cache
|
|
* using the index of @entry, and lock the cluster that holds the entries.
|
|
*/
|
|
void __swap_cache_del_folio(struct swap_cluster_info *ci, struct folio *folio,
|
|
swp_entry_t entry, void *shadow)
|
|
{
|
|
unsigned long old_tb, new_tb;
|
|
unsigned int ci_start, ci_off, ci_end;
|
|
unsigned long nr_pages = folio_nr_pages(folio);
|
|
|
|
VM_WARN_ON_ONCE(__swap_entry_to_cluster(entry) != ci);
|
|
VM_WARN_ON_ONCE_FOLIO(!folio_test_locked(folio), folio);
|
|
VM_WARN_ON_ONCE_FOLIO(!folio_test_swapcache(folio), folio);
|
|
VM_WARN_ON_ONCE_FOLIO(folio_test_writeback(folio), folio);
|
|
|
|
new_tb = shadow_swp_to_tb(shadow);
|
|
ci_start = swp_cluster_offset(entry);
|
|
ci_end = ci_start + nr_pages;
|
|
ci_off = ci_start;
|
|
do {
|
|
/* If shadow is NULL, we sets an empty shadow */
|
|
old_tb = __swap_table_xchg(ci, ci_off, new_tb);
|
|
WARN_ON_ONCE(!swp_tb_is_folio(old_tb) ||
|
|
swp_tb_to_folio(old_tb) != folio);
|
|
} while (++ci_off < ci_end);
|
|
|
|
folio->swap.val = 0;
|
|
folio_clear_swapcache(folio);
|
|
node_stat_mod_folio(folio, NR_FILE_PAGES, -nr_pages);
|
|
lruvec_stat_mod_folio(folio, NR_SWAPCACHE, -nr_pages);
|
|
}
|
|
|
|
/**
|
|
* swap_cache_del_folio - Removes a folio from the swap cache.
|
|
* @folio: The folio.
|
|
*
|
|
* Same as __swap_cache_del_folio, but handles lock and refcount. The
|
|
* caller must ensure the folio is either clean or has a swap count
|
|
* equal to zero, or it may cause data loss.
|
|
*
|
|
* Context: Caller must ensure the folio is locked and in the swap cache.
|
|
*/
|
|
void swap_cache_del_folio(struct folio *folio)
|
|
{
|
|
struct swap_cluster_info *ci;
|
|
swp_entry_t entry = folio->swap;
|
|
|
|
ci = swap_cluster_lock(__swap_entry_to_info(entry), swp_offset(entry));
|
|
__swap_cache_del_folio(ci, folio, entry, NULL);
|
|
swap_cluster_unlock(ci);
|
|
|
|
put_swap_folio(folio, entry);
|
|
folio_ref_sub(folio, folio_nr_pages(folio));
|
|
}
|
|
|
|
/**
|
|
* __swap_cache_replace_folio - Replace a folio in the swap cache.
|
|
* @ci: The locked swap cluster.
|
|
* @old: The old folio to be replaced.
|
|
* @new: The new folio.
|
|
*
|
|
* Replace an existing folio in the swap cache with a new folio. The
|
|
* caller is responsible for setting up the new folio's flag and swap
|
|
* entries. Replacement will take the new folio's swap entry value as
|
|
* the starting offset to override all slots covered by the new folio.
|
|
*
|
|
* Context: Caller must ensure both folios are locked, and lock the
|
|
* cluster that holds the old folio to be replaced.
|
|
*/
|
|
void __swap_cache_replace_folio(struct swap_cluster_info *ci,
|
|
struct folio *old, struct folio *new)
|
|
{
|
|
swp_entry_t entry = new->swap;
|
|
unsigned long nr_pages = folio_nr_pages(new);
|
|
unsigned int ci_off = swp_cluster_offset(entry);
|
|
unsigned int ci_end = ci_off + nr_pages;
|
|
unsigned long old_tb, new_tb;
|
|
|
|
VM_WARN_ON_ONCE(!folio_test_swapcache(old) || !folio_test_swapcache(new));
|
|
VM_WARN_ON_ONCE(!folio_test_locked(old) || !folio_test_locked(new));
|
|
VM_WARN_ON_ONCE(!entry.val);
|
|
|
|
/* Swap cache still stores N entries instead of a high-order entry */
|
|
new_tb = folio_to_swp_tb(new);
|
|
do {
|
|
old_tb = __swap_table_xchg(ci, ci_off, new_tb);
|
|
WARN_ON_ONCE(!swp_tb_is_folio(old_tb) || swp_tb_to_folio(old_tb) != old);
|
|
} while (++ci_off < ci_end);
|
|
|
|
/*
|
|
* If the old folio is partially replaced (e.g., splitting a large
|
|
* folio, the old folio is shrunk, and new split sub folios replace
|
|
* the shrunk part), ensure the new folio doesn't overlap it.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_DEBUG_VM) &&
|
|
folio_order(old) != folio_order(new)) {
|
|
ci_off = swp_cluster_offset(old->swap);
|
|
ci_end = ci_off + folio_nr_pages(old);
|
|
while (ci_off++ < ci_end)
|
|
WARN_ON_ONCE(swp_tb_to_folio(__swap_table_get(ci, ci_off)) != old);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* swap_cache_clear_shadow - Clears a set of shadows in the swap cache.
|
|
* @entry: The starting index entry.
|
|
* @nr_ents: How many slots need to be cleared.
|
|
*
|
|
* Context: Caller must ensure the range is valid, all in one single cluster,
|
|
* not occupied by any folio, and lock the cluster.
|
|
*/
|
|
void __swap_cache_clear_shadow(swp_entry_t entry, int nr_ents)
|
|
{
|
|
struct swap_cluster_info *ci = __swap_entry_to_cluster(entry);
|
|
unsigned int ci_off = swp_cluster_offset(entry), ci_end;
|
|
unsigned long old;
|
|
|
|
ci_end = ci_off + nr_ents;
|
|
do {
|
|
old = __swap_table_xchg(ci, ci_off, null_to_swp_tb());
|
|
WARN_ON_ONCE(swp_tb_is_folio(old));
|
|
} while (++ci_off < ci_end);
|
|
}
|
|
|
|
/*
|
|
* If we are the only user, then try to free up the swap cache.
|
|
*
|
|
* Its ok to check the swapcache flag without the folio lock
|
|
* here because we are going to recheck again inside
|
|
* folio_free_swap() _with_ the lock.
|
|
* - Marcelo
|
|
*/
|
|
void free_swap_cache(struct folio *folio)
|
|
{
|
|
if (folio_test_swapcache(folio) && !folio_mapped(folio) &&
|
|
folio_trylock(folio)) {
|
|
folio_free_swap(folio);
|
|
folio_unlock(folio);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Freeing a folio and also freeing any swap cache associated with
|
|
* this folio if it is the last user.
|
|
*/
|
|
void free_folio_and_swap_cache(struct folio *folio)
|
|
{
|
|
free_swap_cache(folio);
|
|
if (!is_huge_zero_folio(folio))
|
|
folio_put(folio);
|
|
}
|
|
|
|
/*
|
|
* Passed an array of pages, drop them all from swapcache and then release
|
|
* them. They are removed from the LRU and freed if this is their last use.
|
|
*/
|
|
void free_pages_and_swap_cache(struct encoded_page **pages, int nr)
|
|
{
|
|
struct folio_batch folios;
|
|
unsigned int refs[PAGEVEC_SIZE];
|
|
|
|
folio_batch_init(&folios);
|
|
for (int i = 0; i < nr; i++) {
|
|
struct folio *folio = page_folio(encoded_page_ptr(pages[i]));
|
|
|
|
free_swap_cache(folio);
|
|
refs[folios.nr] = 1;
|
|
if (unlikely(encoded_page_flags(pages[i]) &
|
|
ENCODED_PAGE_BIT_NR_PAGES_NEXT))
|
|
refs[folios.nr] = encoded_nr_pages(pages[++i]);
|
|
|
|
if (folio_batch_add(&folios, folio) == 0)
|
|
folios_put_refs(&folios, refs);
|
|
}
|
|
if (folios.nr)
|
|
folios_put_refs(&folios, refs);
|
|
}
|
|
|
|
static inline bool swap_use_vma_readahead(void)
|
|
{
|
|
return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
|
|
}
|
|
|
|
/**
|
|
* swap_update_readahead - Update the readahead statistics of VMA or globally.
|
|
* @folio: the swap cache folio that just got hit.
|
|
* @vma: the VMA that should be updated, could be NULL for global update.
|
|
* @addr: the addr that triggered the swapin, ignored if @vma is NULL.
|
|
*/
|
|
void swap_update_readahead(struct folio *folio, struct vm_area_struct *vma,
|
|
unsigned long addr)
|
|
{
|
|
bool readahead, vma_ra = swap_use_vma_readahead();
|
|
|
|
/*
|
|
* At the moment, we don't support PG_readahead for anon THP
|
|
* so let's bail out rather than confusing the readahead stat.
|
|
*/
|
|
if (unlikely(folio_test_large(folio)))
|
|
return;
|
|
|
|
readahead = folio_test_clear_readahead(folio);
|
|
if (vma && vma_ra) {
|
|
unsigned long ra_val;
|
|
int win, hits;
|
|
|
|
ra_val = GET_SWAP_RA_VAL(vma);
|
|
win = SWAP_RA_WIN(ra_val);
|
|
hits = SWAP_RA_HITS(ra_val);
|
|
if (readahead)
|
|
hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
|
|
atomic_long_set(&vma->swap_readahead_info,
|
|
SWAP_RA_VAL(addr, win, hits));
|
|
}
|
|
|
|
if (readahead) {
|
|
count_vm_event(SWAP_RA_HIT);
|
|
if (!vma || !vma_ra)
|
|
atomic_inc(&swapin_readahead_hits);
|
|
}
|
|
}
|
|
|
|
struct folio *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
|
|
struct mempolicy *mpol, pgoff_t ilx, bool *new_page_allocated,
|
|
bool skip_if_exists)
|
|
{
|
|
struct swap_info_struct *si = __swap_entry_to_info(entry);
|
|
struct folio *folio;
|
|
struct folio *new_folio = NULL;
|
|
struct folio *result = NULL;
|
|
void *shadow = NULL;
|
|
|
|
*new_page_allocated = false;
|
|
for (;;) {
|
|
int err;
|
|
|
|
/*
|
|
* Check the swap cache first, if a cached folio is found,
|
|
* return it unlocked. The caller will lock and check it.
|
|
*/
|
|
folio = swap_cache_get_folio(entry);
|
|
if (folio)
|
|
goto got_folio;
|
|
|
|
/*
|
|
* Just skip read ahead for unused swap slot.
|
|
*/
|
|
if (!swap_entry_swapped(si, entry))
|
|
goto put_and_return;
|
|
|
|
/*
|
|
* Get a new folio to read into from swap. Allocate it now if
|
|
* new_folio not exist, before marking swap_map SWAP_HAS_CACHE,
|
|
* when -EEXIST will cause any racers to loop around until we
|
|
* add it to cache.
|
|
*/
|
|
if (!new_folio) {
|
|
new_folio = folio_alloc_mpol(gfp_mask, 0, mpol, ilx, numa_node_id());
|
|
if (!new_folio)
|
|
goto put_and_return;
|
|
}
|
|
|
|
/*
|
|
* Swap entry may have been freed since our caller observed it.
|
|
*/
|
|
err = swapcache_prepare(entry, 1);
|
|
if (!err)
|
|
break;
|
|
else if (err != -EEXIST)
|
|
goto put_and_return;
|
|
|
|
/*
|
|
* Protect against a recursive call to __read_swap_cache_async()
|
|
* on the same entry waiting forever here because SWAP_HAS_CACHE
|
|
* is set but the folio is not the swap cache yet. This can
|
|
* happen today if mem_cgroup_swapin_charge_folio() below
|
|
* triggers reclaim through zswap, which may call
|
|
* __read_swap_cache_async() in the writeback path.
|
|
*/
|
|
if (skip_if_exists)
|
|
goto put_and_return;
|
|
|
|
/*
|
|
* We might race against __swap_cache_del_folio(), and
|
|
* stumble across a swap_map entry whose SWAP_HAS_CACHE
|
|
* has not yet been cleared. Or race against another
|
|
* __read_swap_cache_async(), which has set SWAP_HAS_CACHE
|
|
* in swap_map, but not yet added its folio to swap cache.
|
|
*/
|
|
schedule_timeout_uninterruptible(1);
|
|
}
|
|
|
|
/*
|
|
* The swap entry is ours to swap in. Prepare the new folio.
|
|
*/
|
|
__folio_set_locked(new_folio);
|
|
__folio_set_swapbacked(new_folio);
|
|
|
|
if (mem_cgroup_swapin_charge_folio(new_folio, NULL, gfp_mask, entry))
|
|
goto fail_unlock;
|
|
|
|
swap_cache_add_folio(new_folio, entry, &shadow);
|
|
memcg1_swapin(entry, 1);
|
|
|
|
if (shadow)
|
|
workingset_refault(new_folio, shadow);
|
|
|
|
/* Caller will initiate read into locked new_folio */
|
|
folio_add_lru(new_folio);
|
|
*new_page_allocated = true;
|
|
folio = new_folio;
|
|
got_folio:
|
|
result = folio;
|
|
goto put_and_return;
|
|
|
|
fail_unlock:
|
|
put_swap_folio(new_folio, entry);
|
|
folio_unlock(new_folio);
|
|
put_and_return:
|
|
if (!(*new_page_allocated) && new_folio)
|
|
folio_put(new_folio);
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Locate a page of swap in physical memory, reserving swap cache space
|
|
* and reading the disk if it is not already cached.
|
|
* A failure return means that either the page allocation failed or that
|
|
* the swap entry is no longer in use.
|
|
*
|
|
* get/put_swap_device() aren't needed to call this function, because
|
|
* __read_swap_cache_async() call them and swap_read_folio() holds the
|
|
* swap cache folio lock.
|
|
*/
|
|
struct folio *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
|
|
struct vm_area_struct *vma, unsigned long addr,
|
|
struct swap_iocb **plug)
|
|
{
|
|
struct swap_info_struct *si;
|
|
bool page_allocated;
|
|
struct mempolicy *mpol;
|
|
pgoff_t ilx;
|
|
struct folio *folio;
|
|
|
|
si = get_swap_device(entry);
|
|
if (!si)
|
|
return NULL;
|
|
|
|
mpol = get_vma_policy(vma, addr, 0, &ilx);
|
|
folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
|
|
&page_allocated, false);
|
|
mpol_cond_put(mpol);
|
|
|
|
if (page_allocated)
|
|
swap_read_folio(folio, plug);
|
|
|
|
put_swap_device(si);
|
|
return folio;
|
|
}
|
|
|
|
static unsigned int __swapin_nr_pages(unsigned long prev_offset,
|
|
unsigned long offset,
|
|
int hits,
|
|
int max_pages,
|
|
int prev_win)
|
|
{
|
|
unsigned int pages, last_ra;
|
|
|
|
/*
|
|
* This heuristic has been found to work well on both sequential and
|
|
* random loads, swapping to hard disk or to SSD: please don't ask
|
|
* what the "+ 2" means, it just happens to work well, that's all.
|
|
*/
|
|
pages = hits + 2;
|
|
if (pages == 2) {
|
|
/*
|
|
* We can have no readahead hits to judge by: but must not get
|
|
* stuck here forever, so check for an adjacent offset instead
|
|
* (and don't even bother to check whether swap type is same).
|
|
*/
|
|
if (offset != prev_offset + 1 && offset != prev_offset - 1)
|
|
pages = 1;
|
|
} else {
|
|
unsigned int roundup = 4;
|
|
while (roundup < pages)
|
|
roundup <<= 1;
|
|
pages = roundup;
|
|
}
|
|
|
|
if (pages > max_pages)
|
|
pages = max_pages;
|
|
|
|
/* Don't shrink readahead too fast */
|
|
last_ra = prev_win / 2;
|
|
if (pages < last_ra)
|
|
pages = last_ra;
|
|
|
|
return pages;
|
|
}
|
|
|
|
static unsigned long swapin_nr_pages(unsigned long offset)
|
|
{
|
|
static unsigned long prev_offset;
|
|
unsigned int hits, pages, max_pages;
|
|
static atomic_t last_readahead_pages;
|
|
|
|
max_pages = 1 << READ_ONCE(page_cluster);
|
|
if (max_pages <= 1)
|
|
return 1;
|
|
|
|
hits = atomic_xchg(&swapin_readahead_hits, 0);
|
|
pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
|
|
max_pages,
|
|
atomic_read(&last_readahead_pages));
|
|
if (!hits)
|
|
WRITE_ONCE(prev_offset, offset);
|
|
atomic_set(&last_readahead_pages, pages);
|
|
|
|
return pages;
|
|
}
|
|
|
|
/**
|
|
* swap_cluster_readahead - swap in pages in hope we need them soon
|
|
* @entry: swap entry of this memory
|
|
* @gfp_mask: memory allocation flags
|
|
* @mpol: NUMA memory allocation policy to be applied
|
|
* @ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE
|
|
*
|
|
* Returns the struct folio for entry and addr, after queueing swapin.
|
|
*
|
|
* Primitive swap readahead code. We simply read an aligned block of
|
|
* (1 << page_cluster) entries in the swap area. This method is chosen
|
|
* because it doesn't cost us any seek time. We also make sure to queue
|
|
* the 'original' request together with the readahead ones...
|
|
*
|
|
* Note: it is intentional that the same NUMA policy and interleave index
|
|
* are used for every page of the readahead: neighbouring pages on swap
|
|
* are fairly likely to have been swapped out from the same node.
|
|
*/
|
|
struct folio *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
|
|
struct mempolicy *mpol, pgoff_t ilx)
|
|
{
|
|
struct folio *folio;
|
|
unsigned long entry_offset = swp_offset(entry);
|
|
unsigned long offset = entry_offset;
|
|
unsigned long start_offset, end_offset;
|
|
unsigned long mask;
|
|
struct swap_info_struct *si = __swap_entry_to_info(entry);
|
|
struct blk_plug plug;
|
|
struct swap_iocb *splug = NULL;
|
|
bool page_allocated;
|
|
|
|
mask = swapin_nr_pages(offset) - 1;
|
|
if (!mask)
|
|
goto skip;
|
|
|
|
/* Read a page_cluster sized and aligned cluster around offset. */
|
|
start_offset = offset & ~mask;
|
|
end_offset = offset | mask;
|
|
if (!start_offset) /* First page is swap header. */
|
|
start_offset++;
|
|
if (end_offset >= si->max)
|
|
end_offset = si->max - 1;
|
|
|
|
blk_start_plug(&plug);
|
|
for (offset = start_offset; offset <= end_offset ; offset++) {
|
|
/* Ok, do the async read-ahead now */
|
|
folio = __read_swap_cache_async(
|
|
swp_entry(swp_type(entry), offset),
|
|
gfp_mask, mpol, ilx, &page_allocated, false);
|
|
if (!folio)
|
|
continue;
|
|
if (page_allocated) {
|
|
swap_read_folio(folio, &splug);
|
|
if (offset != entry_offset) {
|
|
folio_set_readahead(folio);
|
|
count_vm_event(SWAP_RA);
|
|
}
|
|
}
|
|
folio_put(folio);
|
|
}
|
|
blk_finish_plug(&plug);
|
|
swap_read_unplug(splug);
|
|
lru_add_drain(); /* Push any new pages onto the LRU now */
|
|
skip:
|
|
/* The page was likely read above, so no need for plugging here */
|
|
folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
|
|
&page_allocated, false);
|
|
if (unlikely(page_allocated))
|
|
swap_read_folio(folio, NULL);
|
|
return folio;
|
|
}
|
|
|
|
static int swap_vma_ra_win(struct vm_fault *vmf, unsigned long *start,
|
|
unsigned long *end)
|
|
{
|
|
struct vm_area_struct *vma = vmf->vma;
|
|
unsigned long ra_val;
|
|
unsigned long faddr, prev_faddr, left, right;
|
|
unsigned int max_win, hits, prev_win, win;
|
|
|
|
max_win = 1 << min(READ_ONCE(page_cluster), SWAP_RA_ORDER_CEILING);
|
|
if (max_win == 1)
|
|
return 1;
|
|
|
|
faddr = vmf->address;
|
|
ra_val = GET_SWAP_RA_VAL(vma);
|
|
prev_faddr = SWAP_RA_ADDR(ra_val);
|
|
prev_win = SWAP_RA_WIN(ra_val);
|
|
hits = SWAP_RA_HITS(ra_val);
|
|
win = __swapin_nr_pages(PFN_DOWN(prev_faddr), PFN_DOWN(faddr), hits,
|
|
max_win, prev_win);
|
|
atomic_long_set(&vma->swap_readahead_info, SWAP_RA_VAL(faddr, win, 0));
|
|
if (win == 1)
|
|
return 1;
|
|
|
|
if (faddr == prev_faddr + PAGE_SIZE)
|
|
left = faddr;
|
|
else if (prev_faddr == faddr + PAGE_SIZE)
|
|
left = faddr - (win << PAGE_SHIFT) + PAGE_SIZE;
|
|
else
|
|
left = faddr - (((win - 1) / 2) << PAGE_SHIFT);
|
|
right = left + (win << PAGE_SHIFT);
|
|
if ((long)left < 0)
|
|
left = 0;
|
|
*start = max3(left, vma->vm_start, faddr & PMD_MASK);
|
|
*end = min3(right, vma->vm_end, (faddr & PMD_MASK) + PMD_SIZE);
|
|
|
|
return win;
|
|
}
|
|
|
|
/**
|
|
* swap_vma_readahead - swap in pages in hope we need them soon
|
|
* @targ_entry: swap entry of the targeted memory
|
|
* @gfp_mask: memory allocation flags
|
|
* @mpol: NUMA memory allocation policy to be applied
|
|
* @targ_ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE
|
|
* @vmf: fault information
|
|
*
|
|
* Returns the struct folio for entry and addr, after queueing swapin.
|
|
*
|
|
* Primitive swap readahead code. We simply read in a few pages whose
|
|
* virtual addresses are around the fault address in the same vma.
|
|
*
|
|
* Caller must hold read mmap_lock if vmf->vma is not NULL.
|
|
*
|
|
*/
|
|
static struct folio *swap_vma_readahead(swp_entry_t targ_entry, gfp_t gfp_mask,
|
|
struct mempolicy *mpol, pgoff_t targ_ilx, struct vm_fault *vmf)
|
|
{
|
|
struct blk_plug plug;
|
|
struct swap_iocb *splug = NULL;
|
|
struct folio *folio;
|
|
pte_t *pte = NULL, pentry;
|
|
int win;
|
|
unsigned long start, end, addr;
|
|
swp_entry_t entry;
|
|
pgoff_t ilx;
|
|
bool page_allocated;
|
|
|
|
win = swap_vma_ra_win(vmf, &start, &end);
|
|
if (win == 1)
|
|
goto skip;
|
|
|
|
ilx = targ_ilx - PFN_DOWN(vmf->address - start);
|
|
|
|
blk_start_plug(&plug);
|
|
for (addr = start; addr < end; ilx++, addr += PAGE_SIZE) {
|
|
struct swap_info_struct *si = NULL;
|
|
|
|
if (!pte++) {
|
|
pte = pte_offset_map(vmf->pmd, addr);
|
|
if (!pte)
|
|
break;
|
|
}
|
|
pentry = ptep_get_lockless(pte);
|
|
if (!is_swap_pte(pentry))
|
|
continue;
|
|
entry = pte_to_swp_entry(pentry);
|
|
if (unlikely(non_swap_entry(entry)))
|
|
continue;
|
|
pte_unmap(pte);
|
|
pte = NULL;
|
|
/*
|
|
* Readahead entry may come from a device that we are not
|
|
* holding a reference to, try to grab a reference, or skip.
|
|
*/
|
|
if (swp_type(entry) != swp_type(targ_entry)) {
|
|
si = get_swap_device(entry);
|
|
if (!si)
|
|
continue;
|
|
}
|
|
folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
|
|
&page_allocated, false);
|
|
if (si)
|
|
put_swap_device(si);
|
|
if (!folio)
|
|
continue;
|
|
if (page_allocated) {
|
|
swap_read_folio(folio, &splug);
|
|
if (addr != vmf->address) {
|
|
folio_set_readahead(folio);
|
|
count_vm_event(SWAP_RA);
|
|
}
|
|
}
|
|
folio_put(folio);
|
|
}
|
|
if (pte)
|
|
pte_unmap(pte);
|
|
blk_finish_plug(&plug);
|
|
swap_read_unplug(splug);
|
|
lru_add_drain();
|
|
skip:
|
|
/* The folio was likely read above, so no need for plugging here */
|
|
folio = __read_swap_cache_async(targ_entry, gfp_mask, mpol, targ_ilx,
|
|
&page_allocated, false);
|
|
if (unlikely(page_allocated))
|
|
swap_read_folio(folio, NULL);
|
|
return folio;
|
|
}
|
|
|
|
/**
|
|
* swapin_readahead - swap in pages in hope we need them soon
|
|
* @entry: swap entry of this memory
|
|
* @gfp_mask: memory allocation flags
|
|
* @vmf: fault information
|
|
*
|
|
* Returns the struct folio for entry and addr, after queueing swapin.
|
|
*
|
|
* It's a main entry function for swap readahead. By the configuration,
|
|
* it will read ahead blocks by cluster-based(ie, physical disk based)
|
|
* or vma-based(ie, virtual address based on faulty address) readahead.
|
|
*/
|
|
struct folio *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
|
|
struct vm_fault *vmf)
|
|
{
|
|
struct mempolicy *mpol;
|
|
pgoff_t ilx;
|
|
struct folio *folio;
|
|
|
|
mpol = get_vma_policy(vmf->vma, vmf->address, 0, &ilx);
|
|
folio = swap_use_vma_readahead() ?
|
|
swap_vma_readahead(entry, gfp_mask, mpol, ilx, vmf) :
|
|
swap_cluster_readahead(entry, gfp_mask, mpol, ilx);
|
|
mpol_cond_put(mpol);
|
|
|
|
return folio;
|
|
}
|
|
|
|
#ifdef CONFIG_SYSFS
|
|
static ssize_t vma_ra_enabled_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
return sysfs_emit(buf, "%s\n", str_true_false(enable_vma_readahead));
|
|
}
|
|
static ssize_t vma_ra_enabled_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
ssize_t ret;
|
|
|
|
ret = kstrtobool(buf, &enable_vma_readahead);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return count;
|
|
}
|
|
static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled);
|
|
|
|
static struct attribute *swap_attrs[] = {
|
|
&vma_ra_enabled_attr.attr,
|
|
NULL,
|
|
};
|
|
|
|
static const struct attribute_group swap_attr_group = {
|
|
.attrs = swap_attrs,
|
|
};
|
|
|
|
static int __init swap_init(void)
|
|
{
|
|
int err;
|
|
struct kobject *swap_kobj;
|
|
|
|
swap_kobj = kobject_create_and_add("swap", mm_kobj);
|
|
if (!swap_kobj) {
|
|
pr_err("failed to create swap kobject\n");
|
|
return -ENOMEM;
|
|
}
|
|
err = sysfs_create_group(swap_kobj, &swap_attr_group);
|
|
if (err) {
|
|
pr_err("failed to register swap group\n");
|
|
goto delete_obj;
|
|
}
|
|
/* Swap cache writeback is LRU based, no tags for it */
|
|
mapping_set_no_writeback_tags(&swap_space);
|
|
return 0;
|
|
|
|
delete_obj:
|
|
kobject_put(swap_kobj);
|
|
return err;
|
|
}
|
|
subsys_initcall(swap_init);
|
|
#endif
|