Files
linux/fs/pidfs.c
Linus Torvalds 18b19abc37 Merge tag 'namespace-6.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
Pull namespace updates from Christian Brauner:
 "This contains a larger set of changes around the generic namespace
  infrastructure of the kernel.

  Each specific namespace type (net, cgroup, mnt, ...) embedds a struct
  ns_common which carries the reference count of the namespace and so
  on.

  We open-coded and cargo-culted so many quirks for each namespace type
  that it just wasn't scalable anymore. So given there's a bunch of new
  changes coming in that area I've started cleaning all of this up.

  The core change is to make it possible to correctly initialize every
  namespace uniformly and derive the correct initialization settings
  from the type of the namespace such as namespace operations, namespace
  type and so on. This leaves the new ns_common_init() function with a
  single parameter which is the specific namespace type which derives
  the correct parameters statically. This also means the compiler will
  yell as soon as someone does something remotely fishy.

  The ns_common_init() addition also allows us to remove ns_alloc_inum()
  and drops any special-casing of the initial network namespace in the
  network namespace initialization code that Linus complained about.

  Another part is reworking the reference counting. The reference
  counting was open-coded and copy-pasted for each namespace type even
  though they all followed the same rules. This also removes all open
  accesses to the reference count and makes it private and only uses a
  very small set of dedicated helpers to manipulate them just like we do
  for e.g., files.

  In addition this generalizes the mount namespace iteration
  infrastructure introduced a few cycles ago. As reminder, the vfs makes
  it possible to iterate sequentially and bidirectionally through all
  mount namespaces on the system or all mount namespaces that the caller
  holds privilege over. This allow userspace to iterate over all mounts
  in all mount namespaces using the listmount() and statmount() system
  call.

  Each mount namespace has a unique identifier for the lifetime of the
  systems that is exposed to userspace. The network namespace also has a
  unique identifier working exactly the same way. This extends the
  concept to all other namespace types.

  The new nstree type makes it possible to lookup namespaces purely by
  their identifier and to walk the namespace list sequentially and
  bidirectionally for all namespace types, allowing userspace to iterate
  through all namespaces. Looking up namespaces in the namespace tree
  works completely locklessly.

  This also means we can move the mount namespace onto the generic
  infrastructure and remove a bunch of code and members from struct
  mnt_namespace itself.

  There's a bunch of stuff coming on top of this in the future but for
  now this uses the generic namespace tree to extend a concept
  introduced first for pidfs a few cycles ago. For a while now we have
  supported pidfs file handles for pidfds. This has proven to be very
  useful.

  This extends the concept to cover namespaces as well. It is possible
  to encode and decode namespace file handles using the common
  name_to_handle_at() and open_by_handle_at() apis.

  As with pidfs file handles, namespace file handles are exhaustive,
  meaning it is not required to actually hold a reference to nsfs in
  able to decode aka open_by_handle_at() a namespace file handle.
  Instead the FD_NSFS_ROOT constant can be passed which will let the
  kernel grab a reference to the root of nsfs internally and thus decode
  the file handle.

  Namespaces file descriptors can already be derived from pidfds which
  means they aren't subject to overmount protection bugs. IOW, it's
  irrelevant if the caller would not have access to an appropriate
  /proc/<pid>/ns/ directory as they could always just derive the
  namespace based on a pidfd already.

  It has the same advantage as pidfds. It's possible to reliably and for
  the lifetime of the system refer to a namespace without pinning any
  resources and to compare them trivially.

  Permission checking is kept simple. If the caller is located in the
  namespace the file handle refers to they are able to open it otherwise
  they must hold privilege over the owning namespace of the relevant
  namespace.

  The namespace file handle layout is exposed as uapi and has a stable
  and extensible format. For now it simply contains the namespace
  identifier, the namespace type, and the inode number. The stable
  format means that userspace may construct its own namespace file
  handles without going through name_to_handle_at() as they are already
  allowed for pidfs and cgroup file handles"

* tag 'namespace-6.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs: (65 commits)
  ns: drop assert
  ns: move ns type into struct ns_common
  nstree: make struct ns_tree private
  ns: add ns_debug()
  ns: simplify ns_common_init() further
  cgroup: add missing ns_common include
  ns: use inode initializer for initial namespaces
  selftests/namespaces: verify initial namespace inode numbers
  ns: rename to __ns_ref
  nsfs: port to ns_ref_*() helpers
  net: port to ns_ref_*() helpers
  uts: port to ns_ref_*() helpers
  ipv4: use check_net()
  net: use check_net()
  net-sysfs: use check_net()
  user: port to ns_ref_*() helpers
  time: port to ns_ref_*() helpers
  pid: port to ns_ref_*() helpers
  ipc: port to ns_ref_*() helpers
  cgroup: port to ns_ref_*() helpers
  ...
2025-09-29 11:20:29 -07:00

1083 lines
28 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <linux/anon_inodes.h>
#include <linux/exportfs.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/cgroup.h>
#include <linux/magic.h>
#include <linux/mount.h>
#include <linux/pid.h>
#include <linux/pidfs.h>
#include <linux/pid_namespace.h>
#include <linux/poll.h>
#include <linux/proc_fs.h>
#include <linux/proc_ns.h>
#include <linux/pseudo_fs.h>
#include <linux/ptrace.h>
#include <linux/seq_file.h>
#include <uapi/linux/pidfd.h>
#include <linux/ipc_namespace.h>
#include <linux/time_namespace.h>
#include <linux/utsname.h>
#include <net/net_namespace.h>
#include <linux/coredump.h>
#include <linux/xattr.h>
#include "internal.h"
#include "mount.h"
#define PIDFS_PID_DEAD ERR_PTR(-ESRCH)
static struct kmem_cache *pidfs_attr_cachep __ro_after_init;
static struct kmem_cache *pidfs_xattr_cachep __ro_after_init;
static struct path pidfs_root_path = {};
void pidfs_get_root(struct path *path)
{
*path = pidfs_root_path;
path_get(path);
}
/*
* Stashes information that userspace needs to access even after the
* process has been reaped.
*/
struct pidfs_exit_info {
__u64 cgroupid;
__s32 exit_code;
__u32 coredump_mask;
};
struct pidfs_attr {
struct simple_xattrs *xattrs;
struct pidfs_exit_info __pei;
struct pidfs_exit_info *exit_info;
};
static struct rb_root pidfs_ino_tree = RB_ROOT;
#if BITS_PER_LONG == 32
static inline unsigned long pidfs_ino(u64 ino)
{
return lower_32_bits(ino);
}
/* On 32 bit the generation number are the upper 32 bits. */
static inline u32 pidfs_gen(u64 ino)
{
return upper_32_bits(ino);
}
#else
/* On 64 bit simply return ino. */
static inline unsigned long pidfs_ino(u64 ino)
{
return ino;
}
/* On 64 bit the generation number is 0. */
static inline u32 pidfs_gen(u64 ino)
{
return 0;
}
#endif
static int pidfs_ino_cmp(struct rb_node *a, const struct rb_node *b)
{
struct pid *pid_a = rb_entry(a, struct pid, pidfs_node);
struct pid *pid_b = rb_entry(b, struct pid, pidfs_node);
u64 pid_ino_a = pid_a->ino;
u64 pid_ino_b = pid_b->ino;
if (pid_ino_a < pid_ino_b)
return -1;
if (pid_ino_a > pid_ino_b)
return 1;
return 0;
}
void pidfs_add_pid(struct pid *pid)
{
static u64 pidfs_ino_nr = 2;
/*
* On 64 bit nothing special happens. The 64bit number assigned
* to struct pid is the inode number.
*
* On 32 bit the 64 bit number assigned to struct pid is split
* into two 32 bit numbers. The lower 32 bits are used as the
* inode number and the upper 32 bits are used as the inode
* generation number.
*
* On 32 bit pidfs_ino() will return the lower 32 bit. When
* pidfs_ino() returns zero a wrap around happened. When a
* wraparound happens the 64 bit number will be incremented by 2
* so inode numbering starts at 2 again.
*
* On 64 bit comparing two pidfds is as simple as comparing
* inode numbers.
*
* When a wraparound happens on 32 bit multiple pidfds with the
* same inode number are likely to exist (This isn't a problem
* since before pidfs pidfds used the anonymous inode meaning
* all pidfds had the same inode number.). Userspace can
* reconstruct the 64 bit identifier by retrieving both the
* inode number and the inode generation number to compare or
* use file handles.
*/
if (pidfs_ino(pidfs_ino_nr) == 0)
pidfs_ino_nr += 2;
pid->ino = pidfs_ino_nr;
pid->stashed = NULL;
pid->attr = NULL;
pidfs_ino_nr++;
write_seqcount_begin(&pidmap_lock_seq);
rb_find_add_rcu(&pid->pidfs_node, &pidfs_ino_tree, pidfs_ino_cmp);
write_seqcount_end(&pidmap_lock_seq);
}
void pidfs_remove_pid(struct pid *pid)
{
write_seqcount_begin(&pidmap_lock_seq);
rb_erase(&pid->pidfs_node, &pidfs_ino_tree);
write_seqcount_end(&pidmap_lock_seq);
}
void pidfs_free_pid(struct pid *pid)
{
struct pidfs_attr *attr __free(kfree) = no_free_ptr(pid->attr);
struct simple_xattrs *xattrs __free(kfree) = NULL;
/*
* Any dentry must've been wiped from the pid by now.
* Otherwise there's a reference count bug.
*/
VFS_WARN_ON_ONCE(pid->stashed);
/*
* This if an error occurred during e.g., task creation that
* causes us to never go through the exit path.
*/
if (unlikely(!attr))
return;
/* This never had a pidfd created. */
if (IS_ERR(attr))
return;
xattrs = no_free_ptr(attr->xattrs);
if (xattrs)
simple_xattrs_free(xattrs, NULL);
}
#ifdef CONFIG_PROC_FS
/**
* pidfd_show_fdinfo - print information about a pidfd
* @m: proc fdinfo file
* @f: file referencing a pidfd
*
* Pid:
* This function will print the pid that a given pidfd refers to in the
* pid namespace of the procfs instance.
* If the pid namespace of the process is not a descendant of the pid
* namespace of the procfs instance 0 will be shown as its pid. This is
* similar to calling getppid() on a process whose parent is outside of
* its pid namespace.
*
* NSpid:
* If pid namespaces are supported then this function will also print
* the pid of a given pidfd refers to for all descendant pid namespaces
* starting from the current pid namespace of the instance, i.e. the
* Pid field and the first entry in the NSpid field will be identical.
* If the pid namespace of the process is not a descendant of the pid
* namespace of the procfs instance 0 will be shown as its first NSpid
* entry and no others will be shown.
* Note that this differs from the Pid and NSpid fields in
* /proc/<pid>/status where Pid and NSpid are always shown relative to
* the pid namespace of the procfs instance. The difference becomes
* obvious when sending around a pidfd between pid namespaces from a
* different branch of the tree, i.e. where no ancestral relation is
* present between the pid namespaces:
* - create two new pid namespaces ns1 and ns2 in the initial pid
* namespace (also take care to create new mount namespaces in the
* new pid namespace and mount procfs)
* - create a process with a pidfd in ns1
* - send pidfd from ns1 to ns2
* - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
* have exactly one entry, which is 0
*/
static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
{
struct pid *pid = pidfd_pid(f);
struct pid_namespace *ns;
pid_t nr = -1;
if (likely(pid_has_task(pid, PIDTYPE_PID))) {
ns = proc_pid_ns(file_inode(m->file)->i_sb);
nr = pid_nr_ns(pid, ns);
}
seq_put_decimal_ll(m, "Pid:\t", nr);
#ifdef CONFIG_PID_NS
seq_put_decimal_ll(m, "\nNSpid:\t", nr);
if (nr > 0) {
int i;
/* If nr is non-zero it means that 'pid' is valid and that
* ns, i.e. the pid namespace associated with the procfs
* instance, is in the pid namespace hierarchy of pid.
* Start at one below the already printed level.
*/
for (i = ns->level + 1; i <= pid->level; i++)
seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
}
#endif
seq_putc(m, '\n');
}
#endif
/*
* Poll support for process exit notification.
*/
static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
{
struct pid *pid = pidfd_pid(file);
struct task_struct *task;
__poll_t poll_flags = 0;
poll_wait(file, &pid->wait_pidfd, pts);
/*
* Don't wake waiters if the thread-group leader exited
* prematurely. They either get notified when the last subthread
* exits or not at all if one of the remaining subthreads execs
* and assumes the struct pid of the old thread-group leader.
*/
guard(rcu)();
task = pid_task(pid, PIDTYPE_PID);
if (!task)
poll_flags = EPOLLIN | EPOLLRDNORM | EPOLLHUP;
else if (task->exit_state && !delay_group_leader(task))
poll_flags = EPOLLIN | EPOLLRDNORM;
return poll_flags;
}
static inline bool pid_in_current_pidns(const struct pid *pid)
{
const struct pid_namespace *ns = task_active_pid_ns(current);
if (ns->level <= pid->level)
return pid->numbers[ns->level].ns == ns;
return false;
}
static __u32 pidfs_coredump_mask(unsigned long mm_flags)
{
switch (__get_dumpable(mm_flags)) {
case SUID_DUMP_USER:
return PIDFD_COREDUMP_USER;
case SUID_DUMP_ROOT:
return PIDFD_COREDUMP_ROOT;
case SUID_DUMP_DISABLE:
return PIDFD_COREDUMP_SKIP;
default:
WARN_ON_ONCE(true);
}
return 0;
}
static long pidfd_info(struct file *file, unsigned int cmd, unsigned long arg)
{
struct pidfd_info __user *uinfo = (struct pidfd_info __user *)arg;
struct task_struct *task __free(put_task) = NULL;
struct pid *pid = pidfd_pid(file);
size_t usize = _IOC_SIZE(cmd);
struct pidfd_info kinfo = {};
struct pidfs_exit_info *exit_info;
struct user_namespace *user_ns;
struct pidfs_attr *attr;
const struct cred *c;
__u64 mask;
if (!uinfo)
return -EINVAL;
if (usize < PIDFD_INFO_SIZE_VER0)
return -EINVAL; /* First version, no smaller struct possible */
if (copy_from_user(&mask, &uinfo->mask, sizeof(mask)))
return -EFAULT;
/*
* Restrict information retrieval to tasks within the caller's pid
* namespace hierarchy.
*/
if (!pid_in_current_pidns(pid))
return -ESRCH;
attr = READ_ONCE(pid->attr);
if (mask & PIDFD_INFO_EXIT) {
exit_info = READ_ONCE(attr->exit_info);
if (exit_info) {
kinfo.mask |= PIDFD_INFO_EXIT;
#ifdef CONFIG_CGROUPS
kinfo.cgroupid = exit_info->cgroupid;
kinfo.mask |= PIDFD_INFO_CGROUPID;
#endif
kinfo.exit_code = exit_info->exit_code;
}
}
if (mask & PIDFD_INFO_COREDUMP) {
kinfo.mask |= PIDFD_INFO_COREDUMP;
kinfo.coredump_mask = READ_ONCE(attr->__pei.coredump_mask);
}
task = get_pid_task(pid, PIDTYPE_PID);
if (!task) {
/*
* If the task has already been reaped, only exit
* information is available
*/
if (!(mask & PIDFD_INFO_EXIT))
return -ESRCH;
goto copy_out;
}
c = get_task_cred(task);
if (!c)
return -ESRCH;
if ((kinfo.mask & PIDFD_INFO_COREDUMP) && !(kinfo.coredump_mask)) {
task_lock(task);
if (task->mm)
kinfo.coredump_mask = pidfs_coredump_mask(task->mm->flags);
task_unlock(task);
}
/* Unconditionally return identifiers and credentials, the rest only on request */
user_ns = current_user_ns();
kinfo.ruid = from_kuid_munged(user_ns, c->uid);
kinfo.rgid = from_kgid_munged(user_ns, c->gid);
kinfo.euid = from_kuid_munged(user_ns, c->euid);
kinfo.egid = from_kgid_munged(user_ns, c->egid);
kinfo.suid = from_kuid_munged(user_ns, c->suid);
kinfo.sgid = from_kgid_munged(user_ns, c->sgid);
kinfo.fsuid = from_kuid_munged(user_ns, c->fsuid);
kinfo.fsgid = from_kgid_munged(user_ns, c->fsgid);
kinfo.mask |= PIDFD_INFO_CREDS;
put_cred(c);
#ifdef CONFIG_CGROUPS
if (!kinfo.cgroupid) {
struct cgroup *cgrp;
rcu_read_lock();
cgrp = task_dfl_cgroup(task);
kinfo.cgroupid = cgroup_id(cgrp);
kinfo.mask |= PIDFD_INFO_CGROUPID;
rcu_read_unlock();
}
#endif
/*
* Copy pid/tgid last, to reduce the chances the information might be
* stale. Note that it is not possible to ensure it will be valid as the
* task might return as soon as the copy_to_user finishes, but that's ok
* and userspace expects that might happen and can act accordingly, so
* this is just best-effort. What we can do however is checking that all
* the fields are set correctly, or return ESRCH to avoid providing
* incomplete information. */
kinfo.ppid = task_ppid_nr_ns(task, NULL);
kinfo.tgid = task_tgid_vnr(task);
kinfo.pid = task_pid_vnr(task);
kinfo.mask |= PIDFD_INFO_PID;
if (kinfo.pid == 0 || kinfo.tgid == 0)
return -ESRCH;
copy_out:
/*
* If userspace and the kernel have the same struct size it can just
* be copied. If userspace provides an older struct, only the bits that
* userspace knows about will be copied. If userspace provides a new
* struct, only the bits that the kernel knows about will be copied.
*/
return copy_struct_to_user(uinfo, usize, &kinfo, sizeof(kinfo), NULL);
}
static bool pidfs_ioctl_valid(unsigned int cmd)
{
switch (cmd) {
case FS_IOC_GETVERSION:
case PIDFD_GET_CGROUP_NAMESPACE:
case PIDFD_GET_IPC_NAMESPACE:
case PIDFD_GET_MNT_NAMESPACE:
case PIDFD_GET_NET_NAMESPACE:
case PIDFD_GET_PID_FOR_CHILDREN_NAMESPACE:
case PIDFD_GET_TIME_NAMESPACE:
case PIDFD_GET_TIME_FOR_CHILDREN_NAMESPACE:
case PIDFD_GET_UTS_NAMESPACE:
case PIDFD_GET_USER_NAMESPACE:
case PIDFD_GET_PID_NAMESPACE:
return true;
}
/* Extensible ioctls require some more careful checks. */
switch (_IOC_NR(cmd)) {
case _IOC_NR(PIDFD_GET_INFO):
/*
* Try to prevent performing a pidfd ioctl when someone
* erronously mistook the file descriptor for a pidfd.
* This is not perfect but will catch most cases.
*/
return extensible_ioctl_valid(cmd, PIDFD_GET_INFO, PIDFD_INFO_SIZE_VER0);
}
return false;
}
static long pidfd_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
struct task_struct *task __free(put_task) = NULL;
struct nsproxy *nsp __free(put_nsproxy) = NULL;
struct ns_common *ns_common = NULL;
struct pid_namespace *pid_ns;
if (!pidfs_ioctl_valid(cmd))
return -ENOIOCTLCMD;
if (cmd == FS_IOC_GETVERSION) {
if (!arg)
return -EINVAL;
__u32 __user *argp = (__u32 __user *)arg;
return put_user(file_inode(file)->i_generation, argp);
}
/* Extensible IOCTL that does not open namespace FDs, take a shortcut */
if (_IOC_NR(cmd) == _IOC_NR(PIDFD_GET_INFO))
return pidfd_info(file, cmd, arg);
task = get_pid_task(pidfd_pid(file), PIDTYPE_PID);
if (!task)
return -ESRCH;
if (arg)
return -EINVAL;
scoped_guard(task_lock, task) {
nsp = task->nsproxy;
if (nsp)
get_nsproxy(nsp);
}
if (!nsp)
return -ESRCH; /* just pretend it didn't exist */
/*
* We're trying to open a file descriptor to the namespace so perform a
* filesystem cred ptrace check. Also, we mirror nsfs behavior.
*/
if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
return -EACCES;
switch (cmd) {
/* Namespaces that hang of nsproxy. */
case PIDFD_GET_CGROUP_NAMESPACE:
if (IS_ENABLED(CONFIG_CGROUPS)) {
get_cgroup_ns(nsp->cgroup_ns);
ns_common = to_ns_common(nsp->cgroup_ns);
}
break;
case PIDFD_GET_IPC_NAMESPACE:
if (IS_ENABLED(CONFIG_IPC_NS)) {
get_ipc_ns(nsp->ipc_ns);
ns_common = to_ns_common(nsp->ipc_ns);
}
break;
case PIDFD_GET_MNT_NAMESPACE:
get_mnt_ns(nsp->mnt_ns);
ns_common = to_ns_common(nsp->mnt_ns);
break;
case PIDFD_GET_NET_NAMESPACE:
if (IS_ENABLED(CONFIG_NET_NS)) {
ns_common = to_ns_common(nsp->net_ns);
get_net_ns(ns_common);
}
break;
case PIDFD_GET_PID_FOR_CHILDREN_NAMESPACE:
if (IS_ENABLED(CONFIG_PID_NS)) {
get_pid_ns(nsp->pid_ns_for_children);
ns_common = to_ns_common(nsp->pid_ns_for_children);
}
break;
case PIDFD_GET_TIME_NAMESPACE:
if (IS_ENABLED(CONFIG_TIME_NS)) {
get_time_ns(nsp->time_ns);
ns_common = to_ns_common(nsp->time_ns);
}
break;
case PIDFD_GET_TIME_FOR_CHILDREN_NAMESPACE:
if (IS_ENABLED(CONFIG_TIME_NS)) {
get_time_ns(nsp->time_ns_for_children);
ns_common = to_ns_common(nsp->time_ns_for_children);
}
break;
case PIDFD_GET_UTS_NAMESPACE:
if (IS_ENABLED(CONFIG_UTS_NS)) {
get_uts_ns(nsp->uts_ns);
ns_common = to_ns_common(nsp->uts_ns);
}
break;
/* Namespaces that don't hang of nsproxy. */
case PIDFD_GET_USER_NAMESPACE:
if (IS_ENABLED(CONFIG_USER_NS)) {
rcu_read_lock();
ns_common = to_ns_common(get_user_ns(task_cred_xxx(task, user_ns)));
rcu_read_unlock();
}
break;
case PIDFD_GET_PID_NAMESPACE:
if (IS_ENABLED(CONFIG_PID_NS)) {
rcu_read_lock();
pid_ns = task_active_pid_ns(task);
if (pid_ns)
ns_common = to_ns_common(get_pid_ns(pid_ns));
rcu_read_unlock();
}
break;
default:
return -ENOIOCTLCMD;
}
if (!ns_common)
return -EOPNOTSUPP;
/* open_namespace() unconditionally consumes the reference */
return open_namespace(ns_common);
}
static const struct file_operations pidfs_file_operations = {
.poll = pidfd_poll,
#ifdef CONFIG_PROC_FS
.show_fdinfo = pidfd_show_fdinfo,
#endif
.unlocked_ioctl = pidfd_ioctl,
.compat_ioctl = compat_ptr_ioctl,
};
struct pid *pidfd_pid(const struct file *file)
{
if (file->f_op != &pidfs_file_operations)
return ERR_PTR(-EBADF);
return file_inode(file)->i_private;
}
/*
* We're called from release_task(). We know there's at least one
* reference to struct pid being held that won't be released until the
* task has been reaped which cannot happen until we're out of
* release_task().
*
* If this struct pid has at least once been referred to by a pidfd then
* pid->attr will be allocated. If not we mark the struct pid as dead so
* anyone who is trying to register it with pidfs will fail to do so.
* Otherwise we would hand out pidfs for reaped tasks without having
* exit information available.
*
* Worst case is that we've filled in the info and the pid gets freed
* right away in free_pid() when no one holds a pidfd anymore. Since
* pidfs_exit() currently is placed after exit_task_work() we know that
* it cannot be us aka the exiting task holding a pidfd to itself.
*/
void pidfs_exit(struct task_struct *tsk)
{
struct pid *pid = task_pid(tsk);
struct pidfs_attr *attr;
struct pidfs_exit_info *exit_info;
#ifdef CONFIG_CGROUPS
struct cgroup *cgrp;
#endif
might_sleep();
guard(spinlock_irq)(&pid->wait_pidfd.lock);
attr = pid->attr;
if (!attr) {
/*
* No one ever held a pidfd for this struct pid.
* Mark it as dead so no one can add a pidfs
* entry anymore. We're about to be reaped and
* so no exit information would be available.
*/
pid->attr = PIDFS_PID_DEAD;
return;
}
/*
* If @pid->attr is set someone might still legitimately hold a
* pidfd to @pid or someone might concurrently still be getting
* a reference to an already stashed dentry from @pid->stashed.
* So defer cleaning @pid->attr until the last reference to @pid
* is put
*/
exit_info = &attr->__pei;
#ifdef CONFIG_CGROUPS
rcu_read_lock();
cgrp = task_dfl_cgroup(tsk);
exit_info->cgroupid = cgroup_id(cgrp);
rcu_read_unlock();
#endif
exit_info->exit_code = tsk->exit_code;
/* Ensure that PIDFD_GET_INFO sees either all or nothing. */
smp_store_release(&attr->exit_info, &attr->__pei);
}
#ifdef CONFIG_COREDUMP
void pidfs_coredump(const struct coredump_params *cprm)
{
struct pid *pid = cprm->pid;
struct pidfs_exit_info *exit_info;
struct pidfs_attr *attr;
__u32 coredump_mask = 0;
attr = READ_ONCE(pid->attr);
VFS_WARN_ON_ONCE(!attr);
VFS_WARN_ON_ONCE(attr == PIDFS_PID_DEAD);
exit_info = &attr->__pei;
/* Note how we were coredumped. */
coredump_mask = pidfs_coredump_mask(cprm->mm_flags);
/* Note that we actually did coredump. */
coredump_mask |= PIDFD_COREDUMPED;
/* If coredumping is set to skip we should never end up here. */
VFS_WARN_ON_ONCE(coredump_mask & PIDFD_COREDUMP_SKIP);
smp_store_release(&exit_info->coredump_mask, coredump_mask);
}
#endif
static struct vfsmount *pidfs_mnt __ro_after_init;
/*
* The vfs falls back to simple_setattr() if i_op->setattr() isn't
* implemented. Let's reject it completely until we have a clean
* permission concept for pidfds.
*/
static int pidfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
struct iattr *attr)
{
return anon_inode_setattr(idmap, dentry, attr);
}
static int pidfs_getattr(struct mnt_idmap *idmap, const struct path *path,
struct kstat *stat, u32 request_mask,
unsigned int query_flags)
{
return anon_inode_getattr(idmap, path, stat, request_mask, query_flags);
}
static ssize_t pidfs_listxattr(struct dentry *dentry, char *buf, size_t size)
{
struct inode *inode = d_inode(dentry);
struct pid *pid = inode->i_private;
struct pidfs_attr *attr = pid->attr;
struct simple_xattrs *xattrs;
xattrs = READ_ONCE(attr->xattrs);
if (!xattrs)
return 0;
return simple_xattr_list(inode, xattrs, buf, size);
}
static const struct inode_operations pidfs_inode_operations = {
.getattr = pidfs_getattr,
.setattr = pidfs_setattr,
.listxattr = pidfs_listxattr,
};
static void pidfs_evict_inode(struct inode *inode)
{
struct pid *pid = inode->i_private;
clear_inode(inode);
put_pid(pid);
}
static const struct super_operations pidfs_sops = {
.drop_inode = inode_just_drop,
.evict_inode = pidfs_evict_inode,
.statfs = simple_statfs,
};
/*
* 'lsof' has knowledge of out historical anon_inode use, and expects
* the pidfs dentry name to start with 'anon_inode'.
*/
static char *pidfs_dname(struct dentry *dentry, char *buffer, int buflen)
{
return dynamic_dname(buffer, buflen, "anon_inode:[pidfd]");
}
const struct dentry_operations pidfs_dentry_operations = {
.d_dname = pidfs_dname,
.d_prune = stashed_dentry_prune,
};
static int pidfs_encode_fh(struct inode *inode, u32 *fh, int *max_len,
struct inode *parent)
{
const struct pid *pid = inode->i_private;
if (*max_len < 2) {
*max_len = 2;
return FILEID_INVALID;
}
*max_len = 2;
*(u64 *)fh = pid->ino;
return FILEID_KERNFS;
}
static int pidfs_ino_find(const void *key, const struct rb_node *node)
{
const u64 pid_ino = *(u64 *)key;
const struct pid *pid = rb_entry(node, struct pid, pidfs_node);
if (pid_ino < pid->ino)
return -1;
if (pid_ino > pid->ino)
return 1;
return 0;
}
/* Find a struct pid based on the inode number. */
static struct pid *pidfs_ino_get_pid(u64 ino)
{
struct pid *pid;
struct rb_node *node;
unsigned int seq;
guard(rcu)();
do {
seq = read_seqcount_begin(&pidmap_lock_seq);
node = rb_find_rcu(&ino, &pidfs_ino_tree, pidfs_ino_find);
if (node)
break;
} while (read_seqcount_retry(&pidmap_lock_seq, seq));
if (!node)
return NULL;
pid = rb_entry(node, struct pid, pidfs_node);
/* Within our pid namespace hierarchy? */
if (pid_vnr(pid) == 0)
return NULL;
return get_pid(pid);
}
static struct dentry *pidfs_fh_to_dentry(struct super_block *sb,
struct fid *fid, int fh_len,
int fh_type)
{
int ret;
u64 pid_ino;
struct path path;
struct pid *pid;
if (fh_len < 2)
return NULL;
switch (fh_type) {
case FILEID_KERNFS:
pid_ino = *(u64 *)fid;
break;
default:
return NULL;
}
pid = pidfs_ino_get_pid(pid_ino);
if (!pid)
return NULL;
ret = path_from_stashed(&pid->stashed, pidfs_mnt, pid, &path);
if (ret < 0)
return ERR_PTR(ret);
VFS_WARN_ON_ONCE(!pid->attr);
mntput(path.mnt);
return path.dentry;
}
/*
* Make sure that we reject any nonsensical flags that users pass via
* open_by_handle_at(). Note that PIDFD_THREAD is defined as O_EXCL, and
* PIDFD_NONBLOCK as O_NONBLOCK.
*/
#define VALID_FILE_HANDLE_OPEN_FLAGS \
(O_RDONLY | O_WRONLY | O_RDWR | O_NONBLOCK | O_CLOEXEC | O_EXCL)
static int pidfs_export_permission(struct handle_to_path_ctx *ctx,
unsigned int oflags)
{
if (oflags & ~(VALID_FILE_HANDLE_OPEN_FLAGS | O_LARGEFILE))
return -EINVAL;
/*
* pidfd_ino_get_pid() will verify that the struct pid is part
* of the caller's pid namespace hierarchy. No further
* permission checks are needed.
*/
return 0;
}
static struct file *pidfs_export_open(struct path *path, unsigned int oflags)
{
/*
* Clear O_LARGEFILE as open_by_handle_at() forces it and raise
* O_RDWR as pidfds always are.
*/
oflags &= ~O_LARGEFILE;
return dentry_open(path, oflags | O_RDWR, current_cred());
}
static const struct export_operations pidfs_export_operations = {
.encode_fh = pidfs_encode_fh,
.fh_to_dentry = pidfs_fh_to_dentry,
.open = pidfs_export_open,
.permission = pidfs_export_permission,
};
static int pidfs_init_inode(struct inode *inode, void *data)
{
const struct pid *pid = data;
inode->i_private = data;
inode->i_flags |= S_PRIVATE | S_ANON_INODE;
/* We allow to set xattrs. */
inode->i_flags &= ~S_IMMUTABLE;
inode->i_mode |= S_IRWXU;
inode->i_op = &pidfs_inode_operations;
inode->i_fop = &pidfs_file_operations;
inode->i_ino = pidfs_ino(pid->ino);
inode->i_generation = pidfs_gen(pid->ino);
return 0;
}
static void pidfs_put_data(void *data)
{
struct pid *pid = data;
put_pid(pid);
}
/**
* pidfs_register_pid - register a struct pid in pidfs
* @pid: pid to pin
*
* Register a struct pid in pidfs.
*
* Return: On success zero, on error a negative error code is returned.
*/
int pidfs_register_pid(struct pid *pid)
{
struct pidfs_attr *new_attr __free(kfree) = NULL;
struct pidfs_attr *attr;
might_sleep();
if (!pid)
return 0;
attr = READ_ONCE(pid->attr);
if (unlikely(attr == PIDFS_PID_DEAD))
return PTR_ERR(PIDFS_PID_DEAD);
if (attr)
return 0;
new_attr = kmem_cache_zalloc(pidfs_attr_cachep, GFP_KERNEL);
if (!new_attr)
return -ENOMEM;
/* Synchronize with pidfs_exit(). */
guard(spinlock_irq)(&pid->wait_pidfd.lock);
attr = pid->attr;
if (unlikely(attr == PIDFS_PID_DEAD))
return PTR_ERR(PIDFS_PID_DEAD);
if (unlikely(attr))
return 0;
pid->attr = no_free_ptr(new_attr);
return 0;
}
static struct dentry *pidfs_stash_dentry(struct dentry **stashed,
struct dentry *dentry)
{
int ret;
struct pid *pid = d_inode(dentry)->i_private;
VFS_WARN_ON_ONCE(stashed != &pid->stashed);
ret = pidfs_register_pid(pid);
if (ret)
return ERR_PTR(ret);
return stash_dentry(stashed, dentry);
}
static const struct stashed_operations pidfs_stashed_ops = {
.stash_dentry = pidfs_stash_dentry,
.init_inode = pidfs_init_inode,
.put_data = pidfs_put_data,
};
static int pidfs_xattr_get(const struct xattr_handler *handler,
struct dentry *unused, struct inode *inode,
const char *suffix, void *value, size_t size)
{
struct pid *pid = inode->i_private;
struct pidfs_attr *attr = pid->attr;
const char *name;
struct simple_xattrs *xattrs;
xattrs = READ_ONCE(attr->xattrs);
if (!xattrs)
return 0;
name = xattr_full_name(handler, suffix);
return simple_xattr_get(xattrs, name, value, size);
}
static int pidfs_xattr_set(const struct xattr_handler *handler,
struct mnt_idmap *idmap, struct dentry *unused,
struct inode *inode, const char *suffix,
const void *value, size_t size, int flags)
{
struct pid *pid = inode->i_private;
struct pidfs_attr *attr = pid->attr;
const char *name;
struct simple_xattrs *xattrs;
struct simple_xattr *old_xattr;
/* Ensure we're the only one to set @attr->xattrs. */
WARN_ON_ONCE(!inode_is_locked(inode));
xattrs = READ_ONCE(attr->xattrs);
if (!xattrs) {
xattrs = kmem_cache_zalloc(pidfs_xattr_cachep, GFP_KERNEL);
if (!xattrs)
return -ENOMEM;
simple_xattrs_init(xattrs);
smp_store_release(&pid->attr->xattrs, xattrs);
}
name = xattr_full_name(handler, suffix);
old_xattr = simple_xattr_set(xattrs, name, value, size, flags);
if (IS_ERR(old_xattr))
return PTR_ERR(old_xattr);
simple_xattr_free(old_xattr);
return 0;
}
static const struct xattr_handler pidfs_trusted_xattr_handler = {
.prefix = XATTR_TRUSTED_PREFIX,
.get = pidfs_xattr_get,
.set = pidfs_xattr_set,
};
static const struct xattr_handler *const pidfs_xattr_handlers[] = {
&pidfs_trusted_xattr_handler,
NULL
};
static int pidfs_init_fs_context(struct fs_context *fc)
{
struct pseudo_fs_context *ctx;
ctx = init_pseudo(fc, PID_FS_MAGIC);
if (!ctx)
return -ENOMEM;
fc->s_iflags |= SB_I_NOEXEC;
fc->s_iflags |= SB_I_NODEV;
ctx->ops = &pidfs_sops;
ctx->eops = &pidfs_export_operations;
ctx->dops = &pidfs_dentry_operations;
ctx->xattr = pidfs_xattr_handlers;
fc->s_fs_info = (void *)&pidfs_stashed_ops;
return 0;
}
static struct file_system_type pidfs_type = {
.name = "pidfs",
.init_fs_context = pidfs_init_fs_context,
.kill_sb = kill_anon_super,
};
struct file *pidfs_alloc_file(struct pid *pid, unsigned int flags)
{
struct file *pidfd_file;
struct path path __free(path_put) = {};
int ret;
/*
* Ensure that PIDFD_STALE can be passed as a flag without
* overloading other uapi pidfd flags.
*/
BUILD_BUG_ON(PIDFD_STALE == PIDFD_THREAD);
BUILD_BUG_ON(PIDFD_STALE == PIDFD_NONBLOCK);
ret = path_from_stashed(&pid->stashed, pidfs_mnt, get_pid(pid), &path);
if (ret < 0)
return ERR_PTR(ret);
VFS_WARN_ON_ONCE(!pid->attr);
flags &= ~PIDFD_STALE;
flags |= O_RDWR;
pidfd_file = dentry_open(&path, flags, current_cred());
/* Raise PIDFD_THREAD explicitly as do_dentry_open() strips it. */
if (!IS_ERR(pidfd_file))
pidfd_file->f_flags |= (flags & PIDFD_THREAD);
return pidfd_file;
}
void __init pidfs_init(void)
{
pidfs_attr_cachep = kmem_cache_create("pidfs_attr_cache", sizeof(struct pidfs_attr), 0,
(SLAB_HWCACHE_ALIGN | SLAB_RECLAIM_ACCOUNT |
SLAB_ACCOUNT | SLAB_PANIC), NULL);
pidfs_xattr_cachep = kmem_cache_create("pidfs_xattr_cache",
sizeof(struct simple_xattrs), 0,
(SLAB_HWCACHE_ALIGN | SLAB_RECLAIM_ACCOUNT |
SLAB_ACCOUNT | SLAB_PANIC), NULL);
pidfs_mnt = kern_mount(&pidfs_type);
if (IS_ERR(pidfs_mnt))
panic("Failed to mount pidfs pseudo filesystem");
pidfs_root_path.mnt = pidfs_mnt;
pidfs_root_path.dentry = pidfs_mnt->mnt_root;
}