Files
linux/drivers/md/dm-pcache/cache.c
Li Chen a6ee8422b4 dm-pcache: zero cache_info before default init
pcache_meta_find_latest() leaves whatever it last copied into the
caller’s buffer even when it returns NULL. For cache_info_init(),
that meant cache->cache_info could still contain CRC-bad garbage when
no valid metadata exists, leading later initialization paths to read
bogus flags.

Explicitly memset cache->cache_info in cache_info_init_default()
so new-cache paths start from a clean slate. The default sequence
number assignment becomes redundant with this reset, so it drops out.

Signed-off-by: Li Chen <chenl311@chinatelecom.cn>
Reviewed-by: Zheng Gu <cengku@gmail.com>
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
2025-11-18 19:02:08 +01:00

446 lines
11 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
#include <linux/blk_types.h>
#include "cache.h"
#include "cache_dev.h"
#include "backing_dev.h"
#include "dm_pcache.h"
struct kmem_cache *key_cache;
static inline struct pcache_cache_info *get_cache_info_addr(struct pcache_cache *cache)
{
return cache->cache_info_addr + cache->info_index;
}
static void cache_info_write(struct pcache_cache *cache)
{
struct pcache_cache_info *cache_info = &cache->cache_info;
cache_info->header.seq++;
cache_info->header.crc = pcache_meta_crc(&cache_info->header,
sizeof(struct pcache_cache_info));
memcpy_flushcache(get_cache_info_addr(cache), cache_info,
sizeof(struct pcache_cache_info));
cache->info_index = (cache->info_index + 1) % PCACHE_META_INDEX_MAX;
}
static void cache_info_init_default(struct pcache_cache *cache);
static int cache_info_init(struct pcache_cache *cache, struct pcache_cache_options *opts)
{
struct dm_pcache *pcache = CACHE_TO_PCACHE(cache);
struct pcache_cache_info *cache_info_addr;
cache_info_addr = pcache_meta_find_latest(&cache->cache_info_addr->header,
sizeof(struct pcache_cache_info),
PCACHE_CACHE_INFO_SIZE,
&cache->cache_info);
if (IS_ERR(cache_info_addr))
return PTR_ERR(cache_info_addr);
if (cache_info_addr) {
if (opts->data_crc !=
(cache->cache_info.flags & PCACHE_CACHE_FLAGS_DATA_CRC)) {
pcache_dev_err(pcache, "invalid option for data_crc: %s, expected: %s",
opts->data_crc ? "true" : "false",
cache->cache_info.flags & PCACHE_CACHE_FLAGS_DATA_CRC ? "true" : "false");
return -EINVAL;
}
return 0;
}
/* init cache_info for new cache */
cache_info_init_default(cache);
cache_mode_set(cache, opts->cache_mode);
if (opts->data_crc)
cache->cache_info.flags |= PCACHE_CACHE_FLAGS_DATA_CRC;
return 0;
}
static void cache_info_set_gc_percent(struct pcache_cache_info *cache_info, u8 percent)
{
cache_info->flags &= ~PCACHE_CACHE_FLAGS_GC_PERCENT_MASK;
cache_info->flags |= FIELD_PREP(PCACHE_CACHE_FLAGS_GC_PERCENT_MASK, percent);
}
int pcache_cache_set_gc_percent(struct pcache_cache *cache, u8 percent)
{
if (percent > PCACHE_CACHE_GC_PERCENT_MAX || percent < PCACHE_CACHE_GC_PERCENT_MIN)
return -EINVAL;
mutex_lock(&cache->cache_info_lock);
cache_info_set_gc_percent(&cache->cache_info, percent);
cache_info_write(cache);
mutex_unlock(&cache->cache_info_lock);
return 0;
}
void cache_pos_encode(struct pcache_cache *cache,
struct pcache_cache_pos_onmedia *pos_onmedia_base,
struct pcache_cache_pos *pos, u64 seq, u32 *index)
{
struct pcache_cache_pos_onmedia pos_onmedia;
struct pcache_cache_pos_onmedia *pos_onmedia_addr = pos_onmedia_base + *index;
pos_onmedia.cache_seg_id = pos->cache_seg->cache_seg_id;
pos_onmedia.seg_off = pos->seg_off;
pos_onmedia.header.seq = seq;
pos_onmedia.header.crc = cache_pos_onmedia_crc(&pos_onmedia);
memcpy_flushcache(pos_onmedia_addr, &pos_onmedia, sizeof(struct pcache_cache_pos_onmedia));
pmem_wmb();
*index = (*index + 1) % PCACHE_META_INDEX_MAX;
}
int cache_pos_decode(struct pcache_cache *cache,
struct pcache_cache_pos_onmedia *pos_onmedia,
struct pcache_cache_pos *pos, u64 *seq, u32 *index)
{
struct pcache_cache_pos_onmedia latest, *latest_addr;
latest_addr = pcache_meta_find_latest(&pos_onmedia->header,
sizeof(struct pcache_cache_pos_onmedia),
sizeof(struct pcache_cache_pos_onmedia),
&latest);
if (IS_ERR(latest_addr))
return PTR_ERR(latest_addr);
if (!latest_addr)
return -EIO;
pos->cache_seg = &cache->segments[latest.cache_seg_id];
pos->seg_off = latest.seg_off;
*seq = latest.header.seq;
*index = (latest_addr - pos_onmedia);
return 0;
}
static inline void cache_info_set_seg_id(struct pcache_cache *cache, u32 seg_id)
{
cache->cache_info.seg_id = seg_id;
}
static int cache_init(struct dm_pcache *pcache)
{
struct pcache_cache *cache = &pcache->cache;
struct pcache_backing_dev *backing_dev = &pcache->backing_dev;
struct pcache_cache_dev *cache_dev = &pcache->cache_dev;
int ret;
cache->segments = kvcalloc(cache_dev->seg_num, sizeof(struct pcache_cache_segment), GFP_KERNEL);
if (!cache->segments) {
ret = -ENOMEM;
goto err;
}
cache->seg_map = kvcalloc(BITS_TO_LONGS(cache_dev->seg_num), sizeof(unsigned long), GFP_KERNEL);
if (!cache->seg_map) {
ret = -ENOMEM;
goto free_segments;
}
cache->backing_dev = backing_dev;
cache->cache_dev = &pcache->cache_dev;
cache->n_segs = cache_dev->seg_num;
atomic_set(&cache->gc_errors, 0);
spin_lock_init(&cache->seg_map_lock);
spin_lock_init(&cache->key_head_lock);
mutex_init(&cache->cache_info_lock);
mutex_init(&cache->key_tail_lock);
mutex_init(&cache->dirty_tail_lock);
mutex_init(&cache->writeback_lock);
INIT_DELAYED_WORK(&cache->writeback_work, cache_writeback_fn);
INIT_DELAYED_WORK(&cache->gc_work, pcache_cache_gc_fn);
INIT_WORK(&cache->clean_work, clean_fn);
return 0;
free_segments:
kvfree(cache->segments);
err:
return ret;
}
static void cache_exit(struct pcache_cache *cache)
{
kvfree(cache->seg_map);
kvfree(cache->segments);
}
static void cache_info_init_default(struct pcache_cache *cache)
{
struct pcache_cache_info *cache_info = &cache->cache_info;
memset(cache_info, 0, sizeof(*cache_info));
cache_info->n_segs = cache->cache_dev->seg_num;
cache_info_set_gc_percent(cache_info, PCACHE_CACHE_GC_PERCENT_DEFAULT);
}
static int cache_tail_init(struct pcache_cache *cache)
{
struct dm_pcache *pcache = CACHE_TO_PCACHE(cache);
bool new_cache = !(cache->cache_info.flags & PCACHE_CACHE_FLAGS_INIT_DONE);
if (new_cache) {
__set_bit(0, cache->seg_map);
cache->key_head.cache_seg = &cache->segments[0];
cache->key_head.seg_off = 0;
cache_pos_copy(&cache->key_tail, &cache->key_head);
cache_pos_copy(&cache->dirty_tail, &cache->key_head);
cache_encode_dirty_tail(cache);
cache_encode_key_tail(cache);
} else {
if (cache_decode_key_tail(cache) || cache_decode_dirty_tail(cache)) {
pcache_dev_err(pcache, "Corrupted key tail or dirty tail.\n");
return -EIO;
}
}
return 0;
}
static int get_seg_id(struct pcache_cache *cache,
struct pcache_cache_segment *prev_cache_seg,
bool new_cache, u32 *seg_id)
{
struct dm_pcache *pcache = CACHE_TO_PCACHE(cache);
struct pcache_cache_dev *cache_dev = cache->cache_dev;
int ret;
if (new_cache) {
ret = cache_dev_get_empty_segment_id(cache_dev, seg_id);
if (ret) {
pcache_dev_err(pcache, "no available segment\n");
goto err;
}
if (prev_cache_seg)
cache_seg_set_next_seg(prev_cache_seg, *seg_id);
else
cache_info_set_seg_id(cache, *seg_id);
} else {
if (prev_cache_seg) {
struct pcache_segment_info *prev_seg_info;
prev_seg_info = &prev_cache_seg->cache_seg_info;
if (!segment_info_has_next(prev_seg_info)) {
ret = -EFAULT;
goto err;
}
*seg_id = prev_cache_seg->cache_seg_info.next_seg;
} else {
*seg_id = cache->cache_info.seg_id;
}
}
return 0;
err:
return ret;
}
static int cache_segs_init(struct pcache_cache *cache)
{
struct pcache_cache_segment *prev_cache_seg = NULL;
struct pcache_cache_info *cache_info = &cache->cache_info;
bool new_cache = !(cache->cache_info.flags & PCACHE_CACHE_FLAGS_INIT_DONE);
u32 seg_id;
int ret;
u32 i;
for (i = 0; i < cache_info->n_segs; i++) {
ret = get_seg_id(cache, prev_cache_seg, new_cache, &seg_id);
if (ret)
goto err;
ret = cache_seg_init(cache, seg_id, i, new_cache);
if (ret)
goto err;
prev_cache_seg = &cache->segments[i];
}
return 0;
err:
return ret;
}
static int cache_init_req_keys(struct pcache_cache *cache, u32 n_paral)
{
struct dm_pcache *pcache = CACHE_TO_PCACHE(cache);
u32 n_subtrees;
int ret;
u32 i, cpu;
/* Calculate number of cache trees based on the device size */
n_subtrees = DIV_ROUND_UP(cache->dev_size << SECTOR_SHIFT, PCACHE_CACHE_SUBTREE_SIZE);
ret = cache_tree_init(cache, &cache->req_key_tree, n_subtrees);
if (ret)
goto err;
cache->n_ksets = n_paral;
cache->ksets = kvcalloc(cache->n_ksets, PCACHE_KSET_SIZE, GFP_KERNEL);
if (!cache->ksets) {
ret = -ENOMEM;
goto req_tree_exit;
}
/*
* Initialize each kset with a spinlock and delayed work for flushing.
* Each kset is associated with one queue to ensure independent handling
* of cache keys across multiple queues, maximizing multiqueue concurrency.
*/
for (i = 0; i < cache->n_ksets; i++) {
struct pcache_cache_kset *kset = get_kset(cache, i);
kset->cache = cache;
spin_lock_init(&kset->kset_lock);
INIT_DELAYED_WORK(&kset->flush_work, kset_flush_fn);
}
cache->data_heads = alloc_percpu(struct pcache_cache_data_head);
if (!cache->data_heads) {
ret = -ENOMEM;
goto free_kset;
}
for_each_possible_cpu(cpu) {
struct pcache_cache_data_head *h =
per_cpu_ptr(cache->data_heads, cpu);
h->head_pos.cache_seg = NULL;
}
/*
* Replay persisted cache keys using cache_replay.
* This function loads and replays cache keys from previously stored
* ksets, allowing the cache to restore its state after a restart.
*/
ret = cache_replay(cache);
if (ret) {
pcache_dev_err(pcache, "failed to replay keys\n");
goto free_heads;
}
return 0;
free_heads:
free_percpu(cache->data_heads);
free_kset:
kvfree(cache->ksets);
req_tree_exit:
cache_tree_exit(&cache->req_key_tree);
err:
return ret;
}
static void cache_destroy_req_keys(struct pcache_cache *cache)
{
u32 i;
for (i = 0; i < cache->n_ksets; i++) {
struct pcache_cache_kset *kset = get_kset(cache, i);
cancel_delayed_work_sync(&kset->flush_work);
}
free_percpu(cache->data_heads);
kvfree(cache->ksets);
cache_tree_exit(&cache->req_key_tree);
}
int pcache_cache_start(struct dm_pcache *pcache)
{
struct pcache_backing_dev *backing_dev = &pcache->backing_dev;
struct pcache_cache *cache = &pcache->cache;
struct pcache_cache_options *opts = &pcache->opts;
int ret;
ret = cache_init(pcache);
if (ret)
return ret;
cache->cache_info_addr = CACHE_DEV_CACHE_INFO(cache->cache_dev);
cache->cache_ctrl = CACHE_DEV_CACHE_CTRL(cache->cache_dev);
backing_dev->cache = cache;
cache->dev_size = backing_dev->dev_size;
ret = cache_info_init(cache, opts);
if (ret)
goto cache_exit;
ret = cache_segs_init(cache);
if (ret)
goto cache_exit;
ret = cache_tail_init(cache);
if (ret)
goto cache_exit;
ret = cache_init_req_keys(cache, num_online_cpus());
if (ret)
goto cache_exit;
ret = cache_writeback_init(cache);
if (ret)
goto destroy_keys;
cache->cache_info.flags |= PCACHE_CACHE_FLAGS_INIT_DONE;
cache_info_write(cache);
queue_delayed_work(cache_get_wq(cache), &cache->gc_work, 0);
return 0;
destroy_keys:
cache_destroy_req_keys(cache);
cache_exit:
cache_exit(cache);
return ret;
}
void pcache_cache_stop(struct dm_pcache *pcache)
{
struct pcache_cache *cache = &pcache->cache;
pcache_cache_flush(cache);
cancel_delayed_work_sync(&cache->gc_work);
flush_work(&cache->clean_work);
cache_writeback_exit(cache);
if (cache->req_key_tree.n_subtrees)
cache_destroy_req_keys(cache);
cache_exit(cache);
}
struct workqueue_struct *cache_get_wq(struct pcache_cache *cache)
{
struct dm_pcache *pcache = CACHE_TO_PCACHE(cache);
return pcache->task_wq;
}
int pcache_cache_init(void)
{
key_cache = KMEM_CACHE(pcache_cache_key, 0);
if (!key_cache)
return -ENOMEM;
return 0;
}
void pcache_cache_exit(void)
{
kmem_cache_destroy(key_cache);
}