mirror of
https://github.com/torvalds/linux.git
synced 2025-12-01 07:26:02 +07:00
Fix the false-positive warning of qp_ctx being unitialised in sec_request_init. The value of ctx_q_num defaults to 2 and is guaranteed to be non-zero. Thus qp_ctx is always initialised. However, the compiler is not aware of this constraint on ctx_q_num. Restructure the loop so that it is obvious to the compiler that ctx_q_num cannot be zero. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Reviewed-by: Longfang Liu <liulongfang@huawei.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2758 lines
71 KiB
C
2758 lines
71 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* Copyright (c) 2019 HiSilicon Limited. */
|
|
|
|
#include <crypto/aes.h>
|
|
#include <crypto/aead.h>
|
|
#include <crypto/algapi.h>
|
|
#include <crypto/authenc.h>
|
|
#include <crypto/des.h>
|
|
#include <crypto/hash.h>
|
|
#include <crypto/internal/aead.h>
|
|
#include <crypto/internal/des.h>
|
|
#include <crypto/sha1.h>
|
|
#include <crypto/sha2.h>
|
|
#include <crypto/skcipher.h>
|
|
#include <crypto/xts.h>
|
|
#include <linux/crypto.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/idr.h>
|
|
|
|
#include "sec.h"
|
|
#include "sec_crypto.h"
|
|
|
|
#define SEC_PRIORITY 4001
|
|
#define SEC_XTS_MIN_KEY_SIZE (2 * AES_MIN_KEY_SIZE)
|
|
#define SEC_XTS_MID_KEY_SIZE (3 * AES_MIN_KEY_SIZE)
|
|
#define SEC_XTS_MAX_KEY_SIZE (2 * AES_MAX_KEY_SIZE)
|
|
#define SEC_DES3_2KEY_SIZE (2 * DES_KEY_SIZE)
|
|
#define SEC_DES3_3KEY_SIZE (3 * DES_KEY_SIZE)
|
|
|
|
/* SEC sqe(bd) bit operational relative MACRO */
|
|
#define SEC_DE_OFFSET 1
|
|
#define SEC_CIPHER_OFFSET 4
|
|
#define SEC_SCENE_OFFSET 3
|
|
#define SEC_DST_SGL_OFFSET 2
|
|
#define SEC_SRC_SGL_OFFSET 7
|
|
#define SEC_CKEY_OFFSET 9
|
|
#define SEC_CMODE_OFFSET 12
|
|
#define SEC_AKEY_OFFSET 5
|
|
#define SEC_AEAD_ALG_OFFSET 11
|
|
#define SEC_AUTH_OFFSET 6
|
|
|
|
#define SEC_DE_OFFSET_V3 9
|
|
#define SEC_SCENE_OFFSET_V3 5
|
|
#define SEC_CKEY_OFFSET_V3 13
|
|
#define SEC_CTR_CNT_OFFSET 25
|
|
#define SEC_CTR_CNT_ROLLOVER 2
|
|
#define SEC_SRC_SGL_OFFSET_V3 11
|
|
#define SEC_DST_SGL_OFFSET_V3 14
|
|
#define SEC_CALG_OFFSET_V3 4
|
|
#define SEC_AKEY_OFFSET_V3 9
|
|
#define SEC_MAC_OFFSET_V3 4
|
|
#define SEC_AUTH_ALG_OFFSET_V3 15
|
|
#define SEC_CIPHER_AUTH_V3 0xbf
|
|
#define SEC_AUTH_CIPHER_V3 0x40
|
|
#define SEC_FLAG_OFFSET 7
|
|
#define SEC_FLAG_MASK 0x0780
|
|
#define SEC_TYPE_MASK 0x0F
|
|
#define SEC_DONE_MASK 0x0001
|
|
#define SEC_ICV_MASK 0x000E
|
|
|
|
#define SEC_TOTAL_IV_SZ(depth) (SEC_IV_SIZE * (depth))
|
|
#define SEC_SGL_SGE_NR 128
|
|
#define SEC_CIPHER_AUTH 0xfe
|
|
#define SEC_AUTH_CIPHER 0x1
|
|
#define SEC_MAX_MAC_LEN 64
|
|
#define SEC_MAX_AAD_LEN 65535
|
|
#define SEC_MAX_CCM_AAD_LEN 65279
|
|
#define SEC_TOTAL_MAC_SZ(depth) (SEC_MAX_MAC_LEN * (depth))
|
|
|
|
#define SEC_PBUF_IV_OFFSET SEC_PBUF_SZ
|
|
#define SEC_PBUF_MAC_OFFSET (SEC_PBUF_SZ + SEC_IV_SIZE)
|
|
#define SEC_PBUF_PKG (SEC_PBUF_SZ + SEC_IV_SIZE + \
|
|
SEC_MAX_MAC_LEN * 2)
|
|
#define SEC_PBUF_NUM (PAGE_SIZE / SEC_PBUF_PKG)
|
|
#define SEC_PBUF_PAGE_NUM(depth) ((depth) / SEC_PBUF_NUM)
|
|
#define SEC_PBUF_LEFT_SZ(depth) (SEC_PBUF_PKG * ((depth) - \
|
|
SEC_PBUF_PAGE_NUM(depth) * SEC_PBUF_NUM))
|
|
#define SEC_TOTAL_PBUF_SZ(depth) (PAGE_SIZE * SEC_PBUF_PAGE_NUM(depth) + \
|
|
SEC_PBUF_LEFT_SZ(depth))
|
|
|
|
#define SEC_SQE_CFLAG 2
|
|
#define SEC_SQE_AEAD_FLAG 3
|
|
#define SEC_SQE_DONE 0x1
|
|
#define SEC_ICV_ERR 0x2
|
|
#define MAC_LEN_MASK 0x1U
|
|
#define MAX_INPUT_DATA_LEN 0xFFFE00
|
|
#define BITS_MASK 0xFF
|
|
#define WORD_MASK 0x3
|
|
#define BYTE_BITS 0x8
|
|
#define BYTES_TO_WORDS(bcount) ((bcount) >> 2)
|
|
#define SEC_XTS_NAME_SZ 0x3
|
|
#define IV_CM_CAL_NUM 2
|
|
#define IV_CL_MASK 0x7
|
|
#define IV_CL_MIN 2
|
|
#define IV_CL_MID 4
|
|
#define IV_CL_MAX 8
|
|
#define IV_FLAGS_OFFSET 0x6
|
|
#define IV_CM_OFFSET 0x3
|
|
#define IV_LAST_BYTE1 1
|
|
#define IV_LAST_BYTE2 2
|
|
#define IV_LAST_BYTE_MASK 0xFF
|
|
#define IV_CTR_INIT 0x1
|
|
#define IV_BYTE_OFFSET 0x8
|
|
#define SEC_GCM_MIN_AUTH_SZ 0x8
|
|
#define SEC_RETRY_MAX_CNT 5U
|
|
|
|
static DEFINE_MUTEX(sec_algs_lock);
|
|
static unsigned int sec_available_devs;
|
|
|
|
struct sec_skcipher {
|
|
u64 alg_msk;
|
|
struct skcipher_alg alg;
|
|
};
|
|
|
|
struct sec_aead {
|
|
u64 alg_msk;
|
|
struct aead_alg alg;
|
|
};
|
|
|
|
static int sec_aead_soft_crypto(struct sec_ctx *ctx,
|
|
struct aead_request *aead_req,
|
|
bool encrypt);
|
|
static int sec_skcipher_soft_crypto(struct sec_ctx *ctx,
|
|
struct skcipher_request *sreq, bool encrypt);
|
|
|
|
static int sec_alloc_req_id(struct sec_req *req, struct sec_qp_ctx *qp_ctx)
|
|
{
|
|
int req_id;
|
|
|
|
spin_lock_bh(&qp_ctx->id_lock);
|
|
req_id = idr_alloc_cyclic(&qp_ctx->req_idr, NULL, 0, qp_ctx->qp->sq_depth, GFP_ATOMIC);
|
|
spin_unlock_bh(&qp_ctx->id_lock);
|
|
return req_id;
|
|
}
|
|
|
|
static void sec_free_req_id(struct sec_req *req)
|
|
{
|
|
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
|
|
int req_id = req->req_id;
|
|
|
|
if (unlikely(req_id < 0 || req_id >= qp_ctx->qp->sq_depth)) {
|
|
dev_err(req->ctx->dev, "free request id invalid!\n");
|
|
return;
|
|
}
|
|
|
|
spin_lock_bh(&qp_ctx->id_lock);
|
|
idr_remove(&qp_ctx->req_idr, req_id);
|
|
spin_unlock_bh(&qp_ctx->id_lock);
|
|
}
|
|
|
|
static u8 pre_parse_finished_bd(struct bd_status *status, void *resp)
|
|
{
|
|
struct sec_sqe *bd = resp;
|
|
|
|
status->done = le16_to_cpu(bd->type2.done_flag) & SEC_DONE_MASK;
|
|
status->icv = (le16_to_cpu(bd->type2.done_flag) & SEC_ICV_MASK) >> 1;
|
|
status->flag = (le16_to_cpu(bd->type2.done_flag) &
|
|
SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
|
|
status->tag = le16_to_cpu(bd->type2.tag);
|
|
status->err_type = bd->type2.error_type;
|
|
|
|
return bd->type_cipher_auth & SEC_TYPE_MASK;
|
|
}
|
|
|
|
static u8 pre_parse_finished_bd3(struct bd_status *status, void *resp)
|
|
{
|
|
struct sec_sqe3 *bd3 = resp;
|
|
|
|
status->done = le16_to_cpu(bd3->done_flag) & SEC_DONE_MASK;
|
|
status->icv = (le16_to_cpu(bd3->done_flag) & SEC_ICV_MASK) >> 1;
|
|
status->flag = (le16_to_cpu(bd3->done_flag) &
|
|
SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
|
|
status->tag = le64_to_cpu(bd3->tag);
|
|
status->err_type = bd3->error_type;
|
|
|
|
return le32_to_cpu(bd3->bd_param) & SEC_TYPE_MASK;
|
|
}
|
|
|
|
static int sec_cb_status_check(struct sec_req *req,
|
|
struct bd_status *status)
|
|
{
|
|
struct sec_ctx *ctx = req->ctx;
|
|
|
|
if (unlikely(req->err_type || status->done != SEC_SQE_DONE)) {
|
|
dev_err_ratelimited(ctx->dev, "err_type[%d], done[%u]\n",
|
|
req->err_type, status->done);
|
|
return -EIO;
|
|
}
|
|
|
|
if (unlikely(ctx->alg_type == SEC_SKCIPHER)) {
|
|
if (unlikely(status->flag != SEC_SQE_CFLAG)) {
|
|
dev_err_ratelimited(ctx->dev, "flag[%u]\n",
|
|
status->flag);
|
|
return -EIO;
|
|
}
|
|
} else if (unlikely(ctx->alg_type == SEC_AEAD)) {
|
|
if (unlikely(status->flag != SEC_SQE_AEAD_FLAG ||
|
|
status->icv == SEC_ICV_ERR)) {
|
|
dev_err_ratelimited(ctx->dev,
|
|
"flag[%u], icv[%u]\n",
|
|
status->flag, status->icv);
|
|
return -EBADMSG;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int qp_send_message(struct sec_req *req)
|
|
{
|
|
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
|
|
int ret;
|
|
|
|
if (atomic_read(&qp_ctx->qp->qp_status.used) == qp_ctx->qp->sq_depth - 1)
|
|
return -EBUSY;
|
|
|
|
spin_lock_bh(&qp_ctx->req_lock);
|
|
if (atomic_read(&qp_ctx->qp->qp_status.used) == qp_ctx->qp->sq_depth - 1) {
|
|
spin_unlock_bh(&qp_ctx->req_lock);
|
|
return -EBUSY;
|
|
}
|
|
|
|
if (qp_ctx->ctx->type_supported == SEC_BD_TYPE2) {
|
|
req->sec_sqe.type2.tag = cpu_to_le16((u16)qp_ctx->send_head);
|
|
qp_ctx->req_list[qp_ctx->send_head] = req;
|
|
}
|
|
|
|
ret = hisi_qp_send(qp_ctx->qp, &req->sec_sqe);
|
|
if (ret) {
|
|
spin_unlock_bh(&qp_ctx->req_lock);
|
|
return ret;
|
|
}
|
|
if (qp_ctx->ctx->type_supported == SEC_BD_TYPE2)
|
|
qp_ctx->send_head = (qp_ctx->send_head + 1) % qp_ctx->qp->sq_depth;
|
|
|
|
spin_unlock_bh(&qp_ctx->req_lock);
|
|
|
|
atomic64_inc(&req->ctx->sec->debug.dfx.send_cnt);
|
|
return -EINPROGRESS;
|
|
}
|
|
|
|
static void sec_alg_send_backlog_soft(struct sec_ctx *ctx, struct sec_qp_ctx *qp_ctx)
|
|
{
|
|
struct sec_req *req, *tmp;
|
|
int ret;
|
|
|
|
list_for_each_entry_safe(req, tmp, &qp_ctx->backlog.list, list) {
|
|
list_del(&req->list);
|
|
ctx->req_op->buf_unmap(ctx, req);
|
|
if (req->req_id >= 0)
|
|
sec_free_req_id(req);
|
|
|
|
if (ctx->alg_type == SEC_AEAD)
|
|
ret = sec_aead_soft_crypto(ctx, req->aead_req.aead_req,
|
|
req->c_req.encrypt);
|
|
else
|
|
ret = sec_skcipher_soft_crypto(ctx, req->c_req.sk_req,
|
|
req->c_req.encrypt);
|
|
|
|
/* Wake up the busy thread first, then return the errno. */
|
|
crypto_request_complete(req->base, -EINPROGRESS);
|
|
crypto_request_complete(req->base, ret);
|
|
}
|
|
}
|
|
|
|
static void sec_alg_send_backlog(struct sec_ctx *ctx, struct sec_qp_ctx *qp_ctx)
|
|
{
|
|
struct sec_req *req, *tmp;
|
|
int ret;
|
|
|
|
spin_lock_bh(&qp_ctx->backlog.lock);
|
|
list_for_each_entry_safe(req, tmp, &qp_ctx->backlog.list, list) {
|
|
ret = qp_send_message(req);
|
|
switch (ret) {
|
|
case -EINPROGRESS:
|
|
list_del(&req->list);
|
|
crypto_request_complete(req->base, -EINPROGRESS);
|
|
break;
|
|
case -EBUSY:
|
|
/* Device is busy and stop send any request. */
|
|
goto unlock;
|
|
default:
|
|
/* Release memory resources and send all requests through software. */
|
|
sec_alg_send_backlog_soft(ctx, qp_ctx);
|
|
goto unlock;
|
|
}
|
|
}
|
|
|
|
unlock:
|
|
spin_unlock_bh(&qp_ctx->backlog.lock);
|
|
}
|
|
|
|
static void sec_req_cb(struct hisi_qp *qp, void *resp)
|
|
{
|
|
struct sec_qp_ctx *qp_ctx = qp->qp_ctx;
|
|
struct sec_dfx *dfx = &qp_ctx->ctx->sec->debug.dfx;
|
|
u8 type_supported = qp_ctx->ctx->type_supported;
|
|
struct bd_status status;
|
|
struct sec_ctx *ctx;
|
|
struct sec_req *req;
|
|
int err;
|
|
u8 type;
|
|
|
|
if (type_supported == SEC_BD_TYPE2) {
|
|
type = pre_parse_finished_bd(&status, resp);
|
|
req = qp_ctx->req_list[status.tag];
|
|
} else {
|
|
type = pre_parse_finished_bd3(&status, resp);
|
|
req = (void *)(uintptr_t)status.tag;
|
|
}
|
|
|
|
if (unlikely(type != type_supported)) {
|
|
atomic64_inc(&dfx->err_bd_cnt);
|
|
pr_err("err bd type [%u]\n", type);
|
|
return;
|
|
}
|
|
|
|
if (unlikely(!req)) {
|
|
atomic64_inc(&dfx->invalid_req_cnt);
|
|
atomic_inc(&qp->qp_status.used);
|
|
return;
|
|
}
|
|
|
|
req->err_type = status.err_type;
|
|
ctx = req->ctx;
|
|
err = sec_cb_status_check(req, &status);
|
|
if (err)
|
|
atomic64_inc(&dfx->done_flag_cnt);
|
|
|
|
atomic64_inc(&dfx->recv_cnt);
|
|
|
|
ctx->req_op->buf_unmap(ctx, req);
|
|
|
|
ctx->req_op->callback(ctx, req, err);
|
|
}
|
|
|
|
static int sec_alg_send_message_retry(struct sec_req *req)
|
|
{
|
|
int ctr = 0;
|
|
int ret;
|
|
|
|
do {
|
|
ret = qp_send_message(req);
|
|
} while (ret == -EBUSY && ctr++ < SEC_RETRY_MAX_CNT);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int sec_alg_try_enqueue(struct sec_req *req)
|
|
{
|
|
/* Check if any request is already backlogged */
|
|
if (!list_empty(&req->backlog->list))
|
|
return -EBUSY;
|
|
|
|
/* Try to enqueue to HW ring */
|
|
return qp_send_message(req);
|
|
}
|
|
|
|
|
|
static int sec_alg_send_message_maybacklog(struct sec_req *req)
|
|
{
|
|
int ret;
|
|
|
|
ret = sec_alg_try_enqueue(req);
|
|
if (ret != -EBUSY)
|
|
return ret;
|
|
|
|
spin_lock_bh(&req->backlog->lock);
|
|
ret = sec_alg_try_enqueue(req);
|
|
if (ret == -EBUSY)
|
|
list_add_tail(&req->list, &req->backlog->list);
|
|
spin_unlock_bh(&req->backlog->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int sec_bd_send(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
if (req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG)
|
|
return sec_alg_send_message_maybacklog(req);
|
|
|
|
return sec_alg_send_message_retry(req);
|
|
}
|
|
|
|
static int sec_alloc_civ_resource(struct device *dev, struct sec_alg_res *res)
|
|
{
|
|
u16 q_depth = res->depth;
|
|
int i;
|
|
|
|
res->c_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ(q_depth),
|
|
&res->c_ivin_dma, GFP_KERNEL);
|
|
if (!res->c_ivin)
|
|
return -ENOMEM;
|
|
|
|
for (i = 1; i < q_depth; i++) {
|
|
res[i].c_ivin_dma = res->c_ivin_dma + i * SEC_IV_SIZE;
|
|
res[i].c_ivin = res->c_ivin + i * SEC_IV_SIZE;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sec_free_civ_resource(struct device *dev, struct sec_alg_res *res)
|
|
{
|
|
if (res->c_ivin)
|
|
dma_free_coherent(dev, SEC_TOTAL_IV_SZ(res->depth),
|
|
res->c_ivin, res->c_ivin_dma);
|
|
}
|
|
|
|
static int sec_alloc_aiv_resource(struct device *dev, struct sec_alg_res *res)
|
|
{
|
|
u16 q_depth = res->depth;
|
|
int i;
|
|
|
|
res->a_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ(q_depth),
|
|
&res->a_ivin_dma, GFP_KERNEL);
|
|
if (!res->a_ivin)
|
|
return -ENOMEM;
|
|
|
|
for (i = 1; i < q_depth; i++) {
|
|
res[i].a_ivin_dma = res->a_ivin_dma + i * SEC_IV_SIZE;
|
|
res[i].a_ivin = res->a_ivin + i * SEC_IV_SIZE;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sec_free_aiv_resource(struct device *dev, struct sec_alg_res *res)
|
|
{
|
|
if (res->a_ivin)
|
|
dma_free_coherent(dev, SEC_TOTAL_IV_SZ(res->depth),
|
|
res->a_ivin, res->a_ivin_dma);
|
|
}
|
|
|
|
static int sec_alloc_mac_resource(struct device *dev, struct sec_alg_res *res)
|
|
{
|
|
u16 q_depth = res->depth;
|
|
int i;
|
|
|
|
res->out_mac = dma_alloc_coherent(dev, SEC_TOTAL_MAC_SZ(q_depth) << 1,
|
|
&res->out_mac_dma, GFP_KERNEL);
|
|
if (!res->out_mac)
|
|
return -ENOMEM;
|
|
|
|
for (i = 1; i < q_depth; i++) {
|
|
res[i].out_mac_dma = res->out_mac_dma +
|
|
i * (SEC_MAX_MAC_LEN << 1);
|
|
res[i].out_mac = res->out_mac + i * (SEC_MAX_MAC_LEN << 1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sec_free_mac_resource(struct device *dev, struct sec_alg_res *res)
|
|
{
|
|
if (res->out_mac)
|
|
dma_free_coherent(dev, SEC_TOTAL_MAC_SZ(res->depth) << 1,
|
|
res->out_mac, res->out_mac_dma);
|
|
}
|
|
|
|
static void sec_free_pbuf_resource(struct device *dev, struct sec_alg_res *res)
|
|
{
|
|
if (res->pbuf)
|
|
dma_free_coherent(dev, SEC_TOTAL_PBUF_SZ(res->depth),
|
|
res->pbuf, res->pbuf_dma);
|
|
}
|
|
|
|
/*
|
|
* To improve performance, pbuffer is used for
|
|
* small packets (< 512Bytes) as IOMMU translation using.
|
|
*/
|
|
static int sec_alloc_pbuf_resource(struct device *dev, struct sec_alg_res *res)
|
|
{
|
|
u16 q_depth = res->depth;
|
|
int size = SEC_PBUF_PAGE_NUM(q_depth);
|
|
int pbuf_page_offset;
|
|
int i, j, k;
|
|
|
|
res->pbuf = dma_alloc_coherent(dev, SEC_TOTAL_PBUF_SZ(q_depth),
|
|
&res->pbuf_dma, GFP_KERNEL);
|
|
if (!res->pbuf)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* SEC_PBUF_PKG contains data pbuf, iv and
|
|
* out_mac : <SEC_PBUF|SEC_IV|SEC_MAC>
|
|
* Every PAGE contains six SEC_PBUF_PKG
|
|
* The sec_qp_ctx contains QM_Q_DEPTH numbers of SEC_PBUF_PKG
|
|
* So we need SEC_PBUF_PAGE_NUM numbers of PAGE
|
|
* for the SEC_TOTAL_PBUF_SZ
|
|
*/
|
|
for (i = 0; i <= size; i++) {
|
|
pbuf_page_offset = PAGE_SIZE * i;
|
|
for (j = 0; j < SEC_PBUF_NUM; j++) {
|
|
k = i * SEC_PBUF_NUM + j;
|
|
if (k == q_depth)
|
|
break;
|
|
res[k].pbuf = res->pbuf +
|
|
j * SEC_PBUF_PKG + pbuf_page_offset;
|
|
res[k].pbuf_dma = res->pbuf_dma +
|
|
j * SEC_PBUF_PKG + pbuf_page_offset;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sec_alg_resource_alloc(struct sec_ctx *ctx,
|
|
struct sec_qp_ctx *qp_ctx)
|
|
{
|
|
struct sec_alg_res *res = qp_ctx->res;
|
|
struct device *dev = ctx->dev;
|
|
int ret;
|
|
|
|
ret = sec_alloc_civ_resource(dev, res);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (ctx->alg_type == SEC_AEAD) {
|
|
ret = sec_alloc_aiv_resource(dev, res);
|
|
if (ret)
|
|
goto alloc_aiv_fail;
|
|
|
|
ret = sec_alloc_mac_resource(dev, res);
|
|
if (ret)
|
|
goto alloc_mac_fail;
|
|
}
|
|
if (ctx->pbuf_supported) {
|
|
ret = sec_alloc_pbuf_resource(dev, res);
|
|
if (ret) {
|
|
dev_err(dev, "fail to alloc pbuf dma resource!\n");
|
|
goto alloc_pbuf_fail;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
alloc_pbuf_fail:
|
|
if (ctx->alg_type == SEC_AEAD)
|
|
sec_free_mac_resource(dev, qp_ctx->res);
|
|
alloc_mac_fail:
|
|
if (ctx->alg_type == SEC_AEAD)
|
|
sec_free_aiv_resource(dev, res);
|
|
alloc_aiv_fail:
|
|
sec_free_civ_resource(dev, res);
|
|
return ret;
|
|
}
|
|
|
|
static void sec_alg_resource_free(struct sec_ctx *ctx,
|
|
struct sec_qp_ctx *qp_ctx)
|
|
{
|
|
struct device *dev = ctx->dev;
|
|
|
|
sec_free_civ_resource(dev, qp_ctx->res);
|
|
|
|
if (ctx->pbuf_supported)
|
|
sec_free_pbuf_resource(dev, qp_ctx->res);
|
|
if (ctx->alg_type == SEC_AEAD) {
|
|
sec_free_mac_resource(dev, qp_ctx->res);
|
|
sec_free_aiv_resource(dev, qp_ctx->res);
|
|
}
|
|
}
|
|
|
|
static int sec_alloc_qp_ctx_resource(struct sec_ctx *ctx, struct sec_qp_ctx *qp_ctx)
|
|
{
|
|
u16 q_depth = qp_ctx->qp->sq_depth;
|
|
struct device *dev = ctx->dev;
|
|
int ret = -ENOMEM;
|
|
|
|
qp_ctx->req_list = kcalloc(q_depth, sizeof(struct sec_req *), GFP_KERNEL);
|
|
if (!qp_ctx->req_list)
|
|
return ret;
|
|
|
|
qp_ctx->res = kcalloc(q_depth, sizeof(struct sec_alg_res), GFP_KERNEL);
|
|
if (!qp_ctx->res)
|
|
goto err_free_req_list;
|
|
qp_ctx->res->depth = q_depth;
|
|
|
|
qp_ctx->c_in_pool = hisi_acc_create_sgl_pool(dev, q_depth, SEC_SGL_SGE_NR);
|
|
if (IS_ERR(qp_ctx->c_in_pool)) {
|
|
dev_err(dev, "fail to create sgl pool for input!\n");
|
|
goto err_free_res;
|
|
}
|
|
|
|
qp_ctx->c_out_pool = hisi_acc_create_sgl_pool(dev, q_depth, SEC_SGL_SGE_NR);
|
|
if (IS_ERR(qp_ctx->c_out_pool)) {
|
|
dev_err(dev, "fail to create sgl pool for output!\n");
|
|
goto err_free_c_in_pool;
|
|
}
|
|
|
|
ret = sec_alg_resource_alloc(ctx, qp_ctx);
|
|
if (ret)
|
|
goto err_free_c_out_pool;
|
|
|
|
return 0;
|
|
|
|
err_free_c_out_pool:
|
|
hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
|
|
err_free_c_in_pool:
|
|
hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
|
|
err_free_res:
|
|
kfree(qp_ctx->res);
|
|
err_free_req_list:
|
|
kfree(qp_ctx->req_list);
|
|
return ret;
|
|
}
|
|
|
|
static void sec_free_qp_ctx_resource(struct sec_ctx *ctx, struct sec_qp_ctx *qp_ctx)
|
|
{
|
|
struct device *dev = ctx->dev;
|
|
|
|
sec_alg_resource_free(ctx, qp_ctx);
|
|
hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
|
|
hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
|
|
kfree(qp_ctx->res);
|
|
kfree(qp_ctx->req_list);
|
|
}
|
|
|
|
static int sec_create_qp_ctx(struct sec_ctx *ctx, int qp_ctx_id)
|
|
{
|
|
struct sec_qp_ctx *qp_ctx;
|
|
struct hisi_qp *qp;
|
|
int ret;
|
|
|
|
qp_ctx = &ctx->qp_ctx[qp_ctx_id];
|
|
qp = ctx->qps[qp_ctx_id];
|
|
qp->req_type = 0;
|
|
qp->qp_ctx = qp_ctx;
|
|
qp_ctx->qp = qp;
|
|
qp_ctx->ctx = ctx;
|
|
|
|
qp->req_cb = sec_req_cb;
|
|
|
|
spin_lock_init(&qp_ctx->req_lock);
|
|
idr_init(&qp_ctx->req_idr);
|
|
spin_lock_init(&qp_ctx->backlog.lock);
|
|
spin_lock_init(&qp_ctx->id_lock);
|
|
INIT_LIST_HEAD(&qp_ctx->backlog.list);
|
|
qp_ctx->send_head = 0;
|
|
|
|
ret = sec_alloc_qp_ctx_resource(ctx, qp_ctx);
|
|
if (ret)
|
|
goto err_destroy_idr;
|
|
|
|
ret = hisi_qm_start_qp(qp, 0);
|
|
if (ret < 0)
|
|
goto err_resource_free;
|
|
|
|
return 0;
|
|
|
|
err_resource_free:
|
|
sec_free_qp_ctx_resource(ctx, qp_ctx);
|
|
err_destroy_idr:
|
|
idr_destroy(&qp_ctx->req_idr);
|
|
return ret;
|
|
}
|
|
|
|
static void sec_release_qp_ctx(struct sec_ctx *ctx,
|
|
struct sec_qp_ctx *qp_ctx)
|
|
{
|
|
hisi_qm_stop_qp(qp_ctx->qp);
|
|
sec_free_qp_ctx_resource(ctx, qp_ctx);
|
|
idr_destroy(&qp_ctx->req_idr);
|
|
}
|
|
|
|
static int sec_ctx_base_init(struct sec_ctx *ctx)
|
|
{
|
|
struct sec_dev *sec;
|
|
int i, ret;
|
|
|
|
ctx->qps = sec_create_qps();
|
|
if (!ctx->qps) {
|
|
pr_err("Can not create sec qps!\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
sec = container_of(ctx->qps[0]->qm, struct sec_dev, qm);
|
|
ctx->sec = sec;
|
|
ctx->dev = &sec->qm.pdev->dev;
|
|
ctx->hlf_q_num = sec->ctx_q_num >> 1;
|
|
|
|
ctx->pbuf_supported = ctx->sec->iommu_used;
|
|
ctx->qp_ctx = kcalloc(sec->ctx_q_num, sizeof(struct sec_qp_ctx),
|
|
GFP_KERNEL);
|
|
if (!ctx->qp_ctx) {
|
|
ret = -ENOMEM;
|
|
goto err_destroy_qps;
|
|
}
|
|
|
|
for (i = 0; i < sec->ctx_q_num; i++) {
|
|
ret = sec_create_qp_ctx(ctx, i);
|
|
if (ret)
|
|
goto err_sec_release_qp_ctx;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_sec_release_qp_ctx:
|
|
for (i = i - 1; i >= 0; i--)
|
|
sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
|
|
kfree(ctx->qp_ctx);
|
|
err_destroy_qps:
|
|
sec_destroy_qps(ctx->qps, sec->ctx_q_num);
|
|
return ret;
|
|
}
|
|
|
|
static void sec_ctx_base_uninit(struct sec_ctx *ctx)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ctx->sec->ctx_q_num; i++)
|
|
sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
|
|
|
|
sec_destroy_qps(ctx->qps, ctx->sec->ctx_q_num);
|
|
kfree(ctx->qp_ctx);
|
|
}
|
|
|
|
static int sec_cipher_init(struct sec_ctx *ctx)
|
|
{
|
|
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
|
|
|
|
c_ctx->c_key = dma_alloc_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
|
|
&c_ctx->c_key_dma, GFP_KERNEL);
|
|
if (!c_ctx->c_key)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sec_cipher_uninit(struct sec_ctx *ctx)
|
|
{
|
|
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
|
|
|
|
memzero_explicit(c_ctx->c_key, SEC_MAX_KEY_SIZE);
|
|
dma_free_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
|
|
c_ctx->c_key, c_ctx->c_key_dma);
|
|
}
|
|
|
|
static int sec_auth_init(struct sec_ctx *ctx)
|
|
{
|
|
struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
|
|
|
|
a_ctx->a_key = dma_alloc_coherent(ctx->dev, SEC_MAX_AKEY_SIZE,
|
|
&a_ctx->a_key_dma, GFP_KERNEL);
|
|
if (!a_ctx->a_key)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sec_auth_uninit(struct sec_ctx *ctx)
|
|
{
|
|
struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
|
|
|
|
memzero_explicit(a_ctx->a_key, SEC_MAX_AKEY_SIZE);
|
|
dma_free_coherent(ctx->dev, SEC_MAX_AKEY_SIZE,
|
|
a_ctx->a_key, a_ctx->a_key_dma);
|
|
}
|
|
|
|
static int sec_skcipher_fbtfm_init(struct crypto_skcipher *tfm)
|
|
{
|
|
const char *alg = crypto_tfm_alg_name(&tfm->base);
|
|
struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
|
|
|
|
c_ctx->fallback = false;
|
|
|
|
c_ctx->fbtfm = crypto_alloc_sync_skcipher(alg, 0,
|
|
CRYPTO_ALG_NEED_FALLBACK);
|
|
if (IS_ERR(c_ctx->fbtfm)) {
|
|
pr_err("failed to alloc fallback tfm for %s!\n", alg);
|
|
return PTR_ERR(c_ctx->fbtfm);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sec_skcipher_init(struct crypto_skcipher *tfm)
|
|
{
|
|
struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
int ret;
|
|
|
|
ctx->alg_type = SEC_SKCIPHER;
|
|
crypto_skcipher_set_reqsize_dma(tfm, sizeof(struct sec_req));
|
|
ctx->c_ctx.ivsize = crypto_skcipher_ivsize(tfm);
|
|
if (ctx->c_ctx.ivsize > SEC_IV_SIZE) {
|
|
pr_err("get error skcipher iv size!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = sec_ctx_base_init(ctx);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = sec_cipher_init(ctx);
|
|
if (ret)
|
|
goto err_cipher_init;
|
|
|
|
ret = sec_skcipher_fbtfm_init(tfm);
|
|
if (ret)
|
|
goto err_fbtfm_init;
|
|
|
|
return 0;
|
|
|
|
err_fbtfm_init:
|
|
sec_cipher_uninit(ctx);
|
|
err_cipher_init:
|
|
sec_ctx_base_uninit(ctx);
|
|
return ret;
|
|
}
|
|
|
|
static void sec_skcipher_uninit(struct crypto_skcipher *tfm)
|
|
{
|
|
struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
|
|
if (ctx->c_ctx.fbtfm)
|
|
crypto_free_sync_skcipher(ctx->c_ctx.fbtfm);
|
|
|
|
sec_cipher_uninit(ctx);
|
|
sec_ctx_base_uninit(ctx);
|
|
}
|
|
|
|
static int sec_skcipher_3des_setkey(struct crypto_skcipher *tfm, const u8 *key, const u32 keylen)
|
|
{
|
|
struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
|
|
int ret;
|
|
|
|
ret = verify_skcipher_des3_key(tfm, key);
|
|
if (ret)
|
|
return ret;
|
|
|
|
switch (keylen) {
|
|
case SEC_DES3_2KEY_SIZE:
|
|
c_ctx->c_key_len = SEC_CKEY_3DES_2KEY;
|
|
break;
|
|
case SEC_DES3_3KEY_SIZE:
|
|
c_ctx->c_key_len = SEC_CKEY_3DES_3KEY;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sec_skcipher_aes_sm4_setkey(struct sec_cipher_ctx *c_ctx,
|
|
const u32 keylen,
|
|
const enum sec_cmode c_mode)
|
|
{
|
|
if (c_mode == SEC_CMODE_XTS) {
|
|
switch (keylen) {
|
|
case SEC_XTS_MIN_KEY_SIZE:
|
|
c_ctx->c_key_len = SEC_CKEY_128BIT;
|
|
break;
|
|
case SEC_XTS_MID_KEY_SIZE:
|
|
c_ctx->fallback = true;
|
|
break;
|
|
case SEC_XTS_MAX_KEY_SIZE:
|
|
c_ctx->c_key_len = SEC_CKEY_256BIT;
|
|
break;
|
|
default:
|
|
pr_err("hisi_sec2: xts mode key error!\n");
|
|
return -EINVAL;
|
|
}
|
|
} else {
|
|
if (c_ctx->c_alg == SEC_CALG_SM4 &&
|
|
keylen != AES_KEYSIZE_128) {
|
|
pr_err("hisi_sec2: sm4 key error!\n");
|
|
return -EINVAL;
|
|
} else {
|
|
switch (keylen) {
|
|
case AES_KEYSIZE_128:
|
|
c_ctx->c_key_len = SEC_CKEY_128BIT;
|
|
break;
|
|
case AES_KEYSIZE_192:
|
|
c_ctx->c_key_len = SEC_CKEY_192BIT;
|
|
break;
|
|
case AES_KEYSIZE_256:
|
|
c_ctx->c_key_len = SEC_CKEY_256BIT;
|
|
break;
|
|
default:
|
|
pr_err("hisi_sec2: aes key error!\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sec_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
|
|
const u32 keylen, const enum sec_calg c_alg,
|
|
const enum sec_cmode c_mode)
|
|
{
|
|
struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
|
|
struct device *dev = ctx->dev;
|
|
int ret;
|
|
|
|
if (c_mode == SEC_CMODE_XTS) {
|
|
ret = xts_verify_key(tfm, key, keylen);
|
|
if (ret) {
|
|
dev_err(dev, "xts mode key err!\n");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
c_ctx->c_alg = c_alg;
|
|
c_ctx->c_mode = c_mode;
|
|
|
|
switch (c_alg) {
|
|
case SEC_CALG_3DES:
|
|
ret = sec_skcipher_3des_setkey(tfm, key, keylen);
|
|
break;
|
|
case SEC_CALG_AES:
|
|
case SEC_CALG_SM4:
|
|
ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
|
|
break;
|
|
default:
|
|
dev_err(dev, "sec c_alg err!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (ret) {
|
|
dev_err(dev, "set sec key err!\n");
|
|
return ret;
|
|
}
|
|
|
|
memcpy(c_ctx->c_key, key, keylen);
|
|
if (c_ctx->fbtfm) {
|
|
ret = crypto_sync_skcipher_setkey(c_ctx->fbtfm, key, keylen);
|
|
if (ret) {
|
|
dev_err(dev, "failed to set fallback skcipher key!\n");
|
|
return ret;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#define GEN_SEC_SETKEY_FUNC(name, c_alg, c_mode) \
|
|
static int sec_setkey_##name(struct crypto_skcipher *tfm, const u8 *key,\
|
|
u32 keylen) \
|
|
{ \
|
|
return sec_skcipher_setkey(tfm, key, keylen, c_alg, c_mode); \
|
|
}
|
|
|
|
GEN_SEC_SETKEY_FUNC(aes_ecb, SEC_CALG_AES, SEC_CMODE_ECB)
|
|
GEN_SEC_SETKEY_FUNC(aes_cbc, SEC_CALG_AES, SEC_CMODE_CBC)
|
|
GEN_SEC_SETKEY_FUNC(aes_xts, SEC_CALG_AES, SEC_CMODE_XTS)
|
|
GEN_SEC_SETKEY_FUNC(aes_ctr, SEC_CALG_AES, SEC_CMODE_CTR)
|
|
GEN_SEC_SETKEY_FUNC(3des_ecb, SEC_CALG_3DES, SEC_CMODE_ECB)
|
|
GEN_SEC_SETKEY_FUNC(3des_cbc, SEC_CALG_3DES, SEC_CMODE_CBC)
|
|
GEN_SEC_SETKEY_FUNC(sm4_xts, SEC_CALG_SM4, SEC_CMODE_XTS)
|
|
GEN_SEC_SETKEY_FUNC(sm4_cbc, SEC_CALG_SM4, SEC_CMODE_CBC)
|
|
GEN_SEC_SETKEY_FUNC(sm4_ctr, SEC_CALG_SM4, SEC_CMODE_CTR)
|
|
|
|
static int sec_cipher_pbuf_map(struct sec_ctx *ctx, struct sec_req *req,
|
|
struct scatterlist *src)
|
|
{
|
|
struct aead_request *aead_req = req->aead_req.aead_req;
|
|
struct sec_cipher_req *c_req = &req->c_req;
|
|
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
|
|
struct sec_request_buf *buf = &req->buf;
|
|
struct device *dev = ctx->dev;
|
|
int copy_size, pbuf_length;
|
|
int req_id = req->req_id;
|
|
struct crypto_aead *tfm;
|
|
u8 *mac_offset, *pbuf;
|
|
size_t authsize;
|
|
|
|
if (ctx->alg_type == SEC_AEAD)
|
|
copy_size = aead_req->cryptlen + aead_req->assoclen;
|
|
else
|
|
copy_size = c_req->c_len;
|
|
|
|
|
|
pbuf = req->req_id < 0 ? buf->pbuf : qp_ctx->res[req_id].pbuf;
|
|
pbuf_length = sg_copy_to_buffer(src, sg_nents(src), pbuf, copy_size);
|
|
if (unlikely(pbuf_length != copy_size)) {
|
|
dev_err(dev, "copy src data to pbuf error!\n");
|
|
return -EINVAL;
|
|
}
|
|
if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) {
|
|
tfm = crypto_aead_reqtfm(aead_req);
|
|
authsize = crypto_aead_authsize(tfm);
|
|
mac_offset = pbuf + copy_size - authsize;
|
|
memcpy(req->aead_req.out_mac, mac_offset, authsize);
|
|
}
|
|
|
|
if (req->req_id < 0) {
|
|
buf->in_dma = dma_map_single(dev, buf->pbuf, SEC_PBUF_SZ, DMA_BIDIRECTIONAL);
|
|
if (unlikely(dma_mapping_error(dev, buf->in_dma)))
|
|
return -ENOMEM;
|
|
|
|
buf->out_dma = buf->in_dma;
|
|
return 0;
|
|
}
|
|
|
|
req->in_dma = qp_ctx->res[req_id].pbuf_dma;
|
|
c_req->c_out_dma = req->in_dma;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sec_cipher_pbuf_unmap(struct sec_ctx *ctx, struct sec_req *req,
|
|
struct scatterlist *dst)
|
|
{
|
|
struct aead_request *aead_req = req->aead_req.aead_req;
|
|
struct sec_cipher_req *c_req = &req->c_req;
|
|
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
|
|
struct sec_request_buf *buf = &req->buf;
|
|
int copy_size, pbuf_length;
|
|
int req_id = req->req_id;
|
|
|
|
if (ctx->alg_type == SEC_AEAD)
|
|
copy_size = c_req->c_len + aead_req->assoclen;
|
|
else
|
|
copy_size = c_req->c_len;
|
|
|
|
if (req->req_id < 0)
|
|
pbuf_length = sg_copy_from_buffer(dst, sg_nents(dst), buf->pbuf, copy_size);
|
|
else
|
|
pbuf_length = sg_copy_from_buffer(dst, sg_nents(dst), qp_ctx->res[req_id].pbuf,
|
|
copy_size);
|
|
if (unlikely(pbuf_length != copy_size))
|
|
dev_err(ctx->dev, "copy pbuf data to dst error!\n");
|
|
|
|
if (req->req_id < 0)
|
|
dma_unmap_single(ctx->dev, buf->in_dma, SEC_PBUF_SZ, DMA_BIDIRECTIONAL);
|
|
}
|
|
|
|
static int sec_aead_mac_init(struct sec_aead_req *req)
|
|
{
|
|
struct aead_request *aead_req = req->aead_req;
|
|
struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
|
|
size_t authsize = crypto_aead_authsize(tfm);
|
|
struct scatterlist *sgl = aead_req->src;
|
|
u8 *mac_out = req->out_mac;
|
|
size_t copy_size;
|
|
off_t skip_size;
|
|
|
|
/* Copy input mac */
|
|
skip_size = aead_req->assoclen + aead_req->cryptlen - authsize;
|
|
copy_size = sg_pcopy_to_buffer(sgl, sg_nents(sgl), mac_out, authsize, skip_size);
|
|
if (unlikely(copy_size != authsize))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void fill_sg_to_hw_sge(struct scatterlist *sgl, struct sec_hw_sge *hw_sge)
|
|
{
|
|
hw_sge->buf = sg_dma_address(sgl);
|
|
hw_sge->len = cpu_to_le32(sg_dma_len(sgl));
|
|
hw_sge->page_ctrl = sg_virt(sgl);
|
|
}
|
|
|
|
static int sec_cipher_to_hw_sgl(struct device *dev, struct scatterlist *src,
|
|
struct sec_hw_sgl *src_in, dma_addr_t *hw_sgl_dma,
|
|
int dma_dir)
|
|
{
|
|
struct sec_hw_sge *curr_hw_sge = src_in->sge_entries;
|
|
u32 i, sg_n, sg_n_mapped;
|
|
struct scatterlist *sg;
|
|
u32 sge_var = 0;
|
|
|
|
sg_n = sg_nents(src);
|
|
sg_n_mapped = dma_map_sg(dev, src, sg_n, dma_dir);
|
|
if (unlikely(!sg_n_mapped)) {
|
|
dev_err(dev, "dma mapping for SG error!\n");
|
|
return -EINVAL;
|
|
} else if (unlikely(sg_n_mapped > SEC_SGE_NR_NUM)) {
|
|
dev_err(dev, "the number of entries in input scatterlist error!\n");
|
|
dma_unmap_sg(dev, src, sg_n, dma_dir);
|
|
return -EINVAL;
|
|
}
|
|
|
|
for_each_sg(src, sg, sg_n_mapped, i) {
|
|
fill_sg_to_hw_sge(sg, curr_hw_sge);
|
|
curr_hw_sge++;
|
|
sge_var++;
|
|
}
|
|
|
|
src_in->entry_sum_in_sgl = cpu_to_le16(sge_var);
|
|
src_in->entry_sum_in_chain = cpu_to_le16(SEC_SGE_NR_NUM);
|
|
src_in->entry_length_in_sgl = cpu_to_le16(SEC_SGE_NR_NUM);
|
|
*hw_sgl_dma = dma_map_single(dev, src_in, sizeof(struct sec_hw_sgl), dma_dir);
|
|
if (unlikely(dma_mapping_error(dev, *hw_sgl_dma))) {
|
|
dma_unmap_sg(dev, src, sg_n, dma_dir);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sec_cipher_put_hw_sgl(struct device *dev, struct scatterlist *src,
|
|
dma_addr_t src_in, int dma_dir)
|
|
{
|
|
dma_unmap_single(dev, src_in, sizeof(struct sec_hw_sgl), dma_dir);
|
|
dma_unmap_sg(dev, src, sg_nents(src), dma_dir);
|
|
}
|
|
|
|
static int sec_cipher_map_sgl(struct device *dev, struct sec_req *req,
|
|
struct scatterlist *src, struct scatterlist *dst)
|
|
{
|
|
struct sec_hw_sgl *src_in = &req->buf.data_buf.in;
|
|
struct sec_hw_sgl *dst_out = &req->buf.data_buf.out;
|
|
int ret;
|
|
|
|
if (dst == src) {
|
|
ret = sec_cipher_to_hw_sgl(dev, src, src_in, &req->buf.in_dma,
|
|
DMA_BIDIRECTIONAL);
|
|
req->buf.out_dma = req->buf.in_dma;
|
|
return ret;
|
|
}
|
|
|
|
ret = sec_cipher_to_hw_sgl(dev, src, src_in, &req->buf.in_dma, DMA_TO_DEVICE);
|
|
if (unlikely(ret))
|
|
return ret;
|
|
|
|
ret = sec_cipher_to_hw_sgl(dev, dst, dst_out, &req->buf.out_dma,
|
|
DMA_FROM_DEVICE);
|
|
if (unlikely(ret)) {
|
|
sec_cipher_put_hw_sgl(dev, src, req->buf.in_dma, DMA_TO_DEVICE);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sec_cipher_map_inner(struct sec_ctx *ctx, struct sec_req *req,
|
|
struct scatterlist *src, struct scatterlist *dst)
|
|
{
|
|
struct sec_cipher_req *c_req = &req->c_req;
|
|
struct sec_aead_req *a_req = &req->aead_req;
|
|
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
|
|
struct sec_alg_res *res = &qp_ctx->res[req->req_id];
|
|
struct device *dev = ctx->dev;
|
|
enum dma_data_direction src_direction;
|
|
int ret;
|
|
|
|
if (req->use_pbuf) {
|
|
c_req->c_ivin = res->pbuf + SEC_PBUF_IV_OFFSET;
|
|
c_req->c_ivin_dma = res->pbuf_dma + SEC_PBUF_IV_OFFSET;
|
|
if (ctx->alg_type == SEC_AEAD) {
|
|
a_req->a_ivin = res->a_ivin;
|
|
a_req->a_ivin_dma = res->a_ivin_dma;
|
|
a_req->out_mac = res->pbuf + SEC_PBUF_MAC_OFFSET;
|
|
a_req->out_mac_dma = res->pbuf_dma +
|
|
SEC_PBUF_MAC_OFFSET;
|
|
}
|
|
return sec_cipher_pbuf_map(ctx, req, src);
|
|
}
|
|
|
|
c_req->c_ivin = res->c_ivin;
|
|
c_req->c_ivin_dma = res->c_ivin_dma;
|
|
if (ctx->alg_type == SEC_AEAD) {
|
|
a_req->a_ivin = res->a_ivin;
|
|
a_req->a_ivin_dma = res->a_ivin_dma;
|
|
a_req->out_mac = res->out_mac;
|
|
a_req->out_mac_dma = res->out_mac_dma;
|
|
}
|
|
|
|
src_direction = dst == src ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
|
|
req->in = hisi_acc_sg_buf_map_to_hw_sgl(dev, src,
|
|
qp_ctx->c_in_pool,
|
|
req->req_id,
|
|
&req->in_dma, src_direction);
|
|
if (IS_ERR(req->in)) {
|
|
dev_err(dev, "fail to dma map input sgl buffers!\n");
|
|
return PTR_ERR(req->in);
|
|
}
|
|
|
|
if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) {
|
|
ret = sec_aead_mac_init(a_req);
|
|
if (unlikely(ret)) {
|
|
dev_err(dev, "fail to init mac data for ICV!\n");
|
|
hisi_acc_sg_buf_unmap(dev, src, req->in, src_direction);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (dst == src) {
|
|
c_req->c_out = req->in;
|
|
c_req->c_out_dma = req->in_dma;
|
|
} else {
|
|
c_req->c_out = hisi_acc_sg_buf_map_to_hw_sgl(dev, dst,
|
|
qp_ctx->c_out_pool,
|
|
req->req_id,
|
|
&c_req->c_out_dma,
|
|
DMA_FROM_DEVICE);
|
|
|
|
if (IS_ERR(c_req->c_out)) {
|
|
dev_err(dev, "fail to dma map output sgl buffers!\n");
|
|
hisi_acc_sg_buf_unmap(dev, src, req->in, src_direction);
|
|
return PTR_ERR(c_req->c_out);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sec_cipher_map(struct sec_ctx *ctx, struct sec_req *req,
|
|
struct scatterlist *src, struct scatterlist *dst)
|
|
{
|
|
struct sec_aead_req *a_req = &req->aead_req;
|
|
struct sec_cipher_req *c_req = &req->c_req;
|
|
bool is_aead = (ctx->alg_type == SEC_AEAD);
|
|
struct device *dev = ctx->dev;
|
|
int ret = -ENOMEM;
|
|
|
|
if (req->req_id >= 0)
|
|
return sec_cipher_map_inner(ctx, req, src, dst);
|
|
|
|
c_req->c_ivin = c_req->c_ivin_buf;
|
|
c_req->c_ivin_dma = dma_map_single(dev, c_req->c_ivin,
|
|
SEC_IV_SIZE, DMA_TO_DEVICE);
|
|
if (unlikely(dma_mapping_error(dev, c_req->c_ivin_dma)))
|
|
return -ENOMEM;
|
|
|
|
if (is_aead) {
|
|
a_req->a_ivin = a_req->a_ivin_buf;
|
|
a_req->out_mac = a_req->out_mac_buf;
|
|
a_req->a_ivin_dma = dma_map_single(dev, a_req->a_ivin,
|
|
SEC_IV_SIZE, DMA_TO_DEVICE);
|
|
if (unlikely(dma_mapping_error(dev, a_req->a_ivin_dma)))
|
|
goto free_c_ivin_dma;
|
|
|
|
a_req->out_mac_dma = dma_map_single(dev, a_req->out_mac,
|
|
SEC_MAX_MAC_LEN, DMA_BIDIRECTIONAL);
|
|
if (unlikely(dma_mapping_error(dev, a_req->out_mac_dma)))
|
|
goto free_a_ivin_dma;
|
|
}
|
|
if (req->use_pbuf) {
|
|
ret = sec_cipher_pbuf_map(ctx, req, src);
|
|
if (unlikely(ret))
|
|
goto free_out_mac_dma;
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (!c_req->encrypt && is_aead) {
|
|
ret = sec_aead_mac_init(a_req);
|
|
if (unlikely(ret)) {
|
|
dev_err(dev, "fail to init mac data for ICV!\n");
|
|
goto free_out_mac_dma;
|
|
}
|
|
}
|
|
|
|
ret = sec_cipher_map_sgl(dev, req, src, dst);
|
|
if (unlikely(ret)) {
|
|
dev_err(dev, "fail to dma map input sgl buffers!\n");
|
|
goto free_out_mac_dma;
|
|
}
|
|
|
|
return 0;
|
|
|
|
free_out_mac_dma:
|
|
if (is_aead)
|
|
dma_unmap_single(dev, a_req->out_mac_dma, SEC_MAX_MAC_LEN, DMA_BIDIRECTIONAL);
|
|
free_a_ivin_dma:
|
|
if (is_aead)
|
|
dma_unmap_single(dev, a_req->a_ivin_dma, SEC_IV_SIZE, DMA_TO_DEVICE);
|
|
free_c_ivin_dma:
|
|
dma_unmap_single(dev, c_req->c_ivin_dma, SEC_IV_SIZE, DMA_TO_DEVICE);
|
|
return ret;
|
|
}
|
|
|
|
static void sec_cipher_unmap(struct sec_ctx *ctx, struct sec_req *req,
|
|
struct scatterlist *src, struct scatterlist *dst)
|
|
{
|
|
struct sec_aead_req *a_req = &req->aead_req;
|
|
struct sec_cipher_req *c_req = &req->c_req;
|
|
struct device *dev = ctx->dev;
|
|
|
|
if (req->req_id >= 0) {
|
|
if (req->use_pbuf) {
|
|
sec_cipher_pbuf_unmap(ctx, req, dst);
|
|
} else {
|
|
if (dst != src) {
|
|
hisi_acc_sg_buf_unmap(dev, dst, c_req->c_out, DMA_FROM_DEVICE);
|
|
hisi_acc_sg_buf_unmap(dev, src, req->in, DMA_TO_DEVICE);
|
|
} else {
|
|
hisi_acc_sg_buf_unmap(dev, src, req->in, DMA_BIDIRECTIONAL);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (req->use_pbuf) {
|
|
sec_cipher_pbuf_unmap(ctx, req, dst);
|
|
} else {
|
|
if (dst != src) {
|
|
sec_cipher_put_hw_sgl(dev, dst, req->buf.out_dma, DMA_FROM_DEVICE);
|
|
sec_cipher_put_hw_sgl(dev, src, req->buf.in_dma, DMA_TO_DEVICE);
|
|
} else {
|
|
sec_cipher_put_hw_sgl(dev, src, req->buf.in_dma, DMA_BIDIRECTIONAL);
|
|
}
|
|
}
|
|
|
|
dma_unmap_single(dev, c_req->c_ivin_dma, SEC_IV_SIZE, DMA_TO_DEVICE);
|
|
if (ctx->alg_type == SEC_AEAD) {
|
|
dma_unmap_single(dev, a_req->a_ivin_dma, SEC_IV_SIZE, DMA_TO_DEVICE);
|
|
dma_unmap_single(dev, a_req->out_mac_dma, SEC_MAX_MAC_LEN, DMA_BIDIRECTIONAL);
|
|
}
|
|
}
|
|
|
|
static int sec_skcipher_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
struct skcipher_request *sq = req->c_req.sk_req;
|
|
|
|
return sec_cipher_map(ctx, req, sq->src, sq->dst);
|
|
}
|
|
|
|
static void sec_skcipher_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
struct skcipher_request *sq = req->c_req.sk_req;
|
|
|
|
sec_cipher_unmap(ctx, req, sq->src, sq->dst);
|
|
}
|
|
|
|
static int sec_aead_aes_set_key(struct sec_cipher_ctx *c_ctx,
|
|
struct crypto_authenc_keys *keys)
|
|
{
|
|
switch (keys->enckeylen) {
|
|
case AES_KEYSIZE_128:
|
|
c_ctx->c_key_len = SEC_CKEY_128BIT;
|
|
break;
|
|
case AES_KEYSIZE_192:
|
|
c_ctx->c_key_len = SEC_CKEY_192BIT;
|
|
break;
|
|
case AES_KEYSIZE_256:
|
|
c_ctx->c_key_len = SEC_CKEY_256BIT;
|
|
break;
|
|
default:
|
|
pr_err("hisi_sec2: aead aes key error!\n");
|
|
return -EINVAL;
|
|
}
|
|
memcpy(c_ctx->c_key, keys->enckey, keys->enckeylen);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sec_aead_auth_set_key(struct sec_auth_ctx *ctx,
|
|
struct crypto_authenc_keys *keys)
|
|
{
|
|
struct crypto_shash *hash_tfm = ctx->hash_tfm;
|
|
int blocksize, digestsize, ret;
|
|
|
|
blocksize = crypto_shash_blocksize(hash_tfm);
|
|
digestsize = crypto_shash_digestsize(hash_tfm);
|
|
if (keys->authkeylen > blocksize) {
|
|
ret = crypto_shash_tfm_digest(hash_tfm, keys->authkey,
|
|
keys->authkeylen, ctx->a_key);
|
|
if (ret) {
|
|
pr_err("hisi_sec2: aead auth digest error!\n");
|
|
return -EINVAL;
|
|
}
|
|
ctx->a_key_len = digestsize;
|
|
} else {
|
|
if (keys->authkeylen)
|
|
memcpy(ctx->a_key, keys->authkey, keys->authkeylen);
|
|
ctx->a_key_len = keys->authkeylen;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sec_aead_setauthsize(struct crypto_aead *aead, unsigned int authsize)
|
|
{
|
|
struct crypto_tfm *tfm = crypto_aead_tfm(aead);
|
|
struct sec_ctx *ctx = crypto_tfm_ctx(tfm);
|
|
struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
|
|
|
|
return crypto_aead_setauthsize(a_ctx->fallback_aead_tfm, authsize);
|
|
}
|
|
|
|
static int sec_aead_fallback_setkey(struct sec_auth_ctx *a_ctx,
|
|
struct crypto_aead *tfm, const u8 *key,
|
|
unsigned int keylen)
|
|
{
|
|
crypto_aead_clear_flags(a_ctx->fallback_aead_tfm, CRYPTO_TFM_REQ_MASK);
|
|
crypto_aead_set_flags(a_ctx->fallback_aead_tfm,
|
|
crypto_aead_get_flags(tfm) & CRYPTO_TFM_REQ_MASK);
|
|
return crypto_aead_setkey(a_ctx->fallback_aead_tfm, key, keylen);
|
|
}
|
|
|
|
static int sec_aead_setkey(struct crypto_aead *tfm, const u8 *key,
|
|
const u32 keylen, const enum sec_hash_alg a_alg,
|
|
const enum sec_calg c_alg,
|
|
const enum sec_cmode c_mode)
|
|
{
|
|
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
|
|
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
|
|
struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
|
|
struct device *dev = ctx->dev;
|
|
struct crypto_authenc_keys keys;
|
|
int ret;
|
|
|
|
ctx->a_ctx.a_alg = a_alg;
|
|
ctx->c_ctx.c_alg = c_alg;
|
|
c_ctx->c_mode = c_mode;
|
|
|
|
if (c_mode == SEC_CMODE_CCM || c_mode == SEC_CMODE_GCM) {
|
|
ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
|
|
if (ret) {
|
|
dev_err(dev, "set sec aes ccm cipher key err!\n");
|
|
return ret;
|
|
}
|
|
memcpy(c_ctx->c_key, key, keylen);
|
|
|
|
return sec_aead_fallback_setkey(a_ctx, tfm, key, keylen);
|
|
}
|
|
|
|
ret = crypto_authenc_extractkeys(&keys, key, keylen);
|
|
if (ret) {
|
|
dev_err(dev, "sec extract aead keys err!\n");
|
|
goto bad_key;
|
|
}
|
|
|
|
ret = sec_aead_aes_set_key(c_ctx, &keys);
|
|
if (ret) {
|
|
dev_err(dev, "set sec cipher key err!\n");
|
|
goto bad_key;
|
|
}
|
|
|
|
ret = sec_aead_auth_set_key(&ctx->a_ctx, &keys);
|
|
if (ret) {
|
|
dev_err(dev, "set sec auth key err!\n");
|
|
goto bad_key;
|
|
}
|
|
|
|
ret = sec_aead_fallback_setkey(a_ctx, tfm, key, keylen);
|
|
if (ret) {
|
|
dev_err(dev, "set sec fallback key err!\n");
|
|
goto bad_key;
|
|
}
|
|
|
|
return 0;
|
|
|
|
bad_key:
|
|
memzero_explicit(&keys, sizeof(struct crypto_authenc_keys));
|
|
return ret;
|
|
}
|
|
|
|
|
|
#define GEN_SEC_AEAD_SETKEY_FUNC(name, aalg, calg, cmode) \
|
|
static int sec_setkey_##name(struct crypto_aead *tfm, const u8 *key, u32 keylen) \
|
|
{ \
|
|
return sec_aead_setkey(tfm, key, keylen, aalg, calg, cmode); \
|
|
}
|
|
|
|
GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha1, SEC_A_HMAC_SHA1, SEC_CALG_AES, SEC_CMODE_CBC)
|
|
GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha256, SEC_A_HMAC_SHA256, SEC_CALG_AES, SEC_CMODE_CBC)
|
|
GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha512, SEC_A_HMAC_SHA512, SEC_CALG_AES, SEC_CMODE_CBC)
|
|
GEN_SEC_AEAD_SETKEY_FUNC(aes_ccm, 0, SEC_CALG_AES, SEC_CMODE_CCM)
|
|
GEN_SEC_AEAD_SETKEY_FUNC(aes_gcm, 0, SEC_CALG_AES, SEC_CMODE_GCM)
|
|
GEN_SEC_AEAD_SETKEY_FUNC(sm4_ccm, 0, SEC_CALG_SM4, SEC_CMODE_CCM)
|
|
GEN_SEC_AEAD_SETKEY_FUNC(sm4_gcm, 0, SEC_CALG_SM4, SEC_CMODE_GCM)
|
|
|
|
static int sec_aead_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
struct aead_request *aq = req->aead_req.aead_req;
|
|
|
|
return sec_cipher_map(ctx, req, aq->src, aq->dst);
|
|
}
|
|
|
|
static void sec_aead_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
struct aead_request *aq = req->aead_req.aead_req;
|
|
|
|
sec_cipher_unmap(ctx, req, aq->src, aq->dst);
|
|
}
|
|
|
|
static int sec_request_transfer(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
int ret;
|
|
|
|
ret = ctx->req_op->buf_map(ctx, req);
|
|
if (unlikely(ret))
|
|
return ret;
|
|
|
|
ctx->req_op->do_transfer(ctx, req);
|
|
|
|
ret = ctx->req_op->bd_fill(ctx, req);
|
|
if (unlikely(ret))
|
|
goto unmap_req_buf;
|
|
|
|
return ret;
|
|
|
|
unmap_req_buf:
|
|
ctx->req_op->buf_unmap(ctx, req);
|
|
return ret;
|
|
}
|
|
|
|
static void sec_request_untransfer(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
ctx->req_op->buf_unmap(ctx, req);
|
|
}
|
|
|
|
static void sec_skcipher_copy_iv(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
struct skcipher_request *sk_req = req->c_req.sk_req;
|
|
struct sec_cipher_req *c_req = &req->c_req;
|
|
|
|
memcpy(c_req->c_ivin, sk_req->iv, ctx->c_ctx.ivsize);
|
|
}
|
|
|
|
static int sec_skcipher_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
|
|
struct sec_cipher_req *c_req = &req->c_req;
|
|
struct sec_sqe *sec_sqe = &req->sec_sqe;
|
|
u8 scene, sa_type, da_type;
|
|
u8 bd_type, cipher;
|
|
u8 de = 0;
|
|
|
|
memset(sec_sqe, 0, sizeof(struct sec_sqe));
|
|
|
|
sec_sqe->type2.c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
|
|
sec_sqe->type2.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
|
|
if (req->req_id < 0) {
|
|
sec_sqe->type2.data_src_addr = cpu_to_le64(req->buf.in_dma);
|
|
sec_sqe->type2.data_dst_addr = cpu_to_le64(req->buf.out_dma);
|
|
} else {
|
|
sec_sqe->type2.data_src_addr = cpu_to_le64(req->in_dma);
|
|
sec_sqe->type2.data_dst_addr = cpu_to_le64(c_req->c_out_dma);
|
|
}
|
|
if (sec_sqe->type2.data_src_addr != sec_sqe->type2.data_dst_addr)
|
|
de = 0x1 << SEC_DE_OFFSET;
|
|
|
|
sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_mode) <<
|
|
SEC_CMODE_OFFSET);
|
|
sec_sqe->type2.c_alg = c_ctx->c_alg;
|
|
sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
|
|
SEC_CKEY_OFFSET);
|
|
|
|
bd_type = SEC_BD_TYPE2;
|
|
if (c_req->encrypt)
|
|
cipher = SEC_CIPHER_ENC << SEC_CIPHER_OFFSET;
|
|
else
|
|
cipher = SEC_CIPHER_DEC << SEC_CIPHER_OFFSET;
|
|
sec_sqe->type_cipher_auth = bd_type | cipher;
|
|
|
|
/* Set destination and source address type */
|
|
if (req->use_pbuf) {
|
|
sa_type = SEC_PBUF << SEC_SRC_SGL_OFFSET;
|
|
da_type = SEC_PBUF << SEC_DST_SGL_OFFSET;
|
|
} else {
|
|
sa_type = SEC_SGL << SEC_SRC_SGL_OFFSET;
|
|
da_type = SEC_SGL << SEC_DST_SGL_OFFSET;
|
|
}
|
|
|
|
sec_sqe->sdm_addr_type |= da_type;
|
|
scene = SEC_COMM_SCENE << SEC_SCENE_OFFSET;
|
|
|
|
sec_sqe->sds_sa_type = (de | scene | sa_type);
|
|
|
|
sec_sqe->type2.clen_ivhlen |= cpu_to_le32(c_req->c_len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sec_skcipher_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3;
|
|
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
|
|
struct sec_cipher_req *c_req = &req->c_req;
|
|
u32 bd_param = 0;
|
|
u16 cipher;
|
|
|
|
memset(sec_sqe3, 0, sizeof(struct sec_sqe3));
|
|
|
|
sec_sqe3->c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
|
|
sec_sqe3->no_scene.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
|
|
if (req->req_id < 0) {
|
|
sec_sqe3->data_src_addr = cpu_to_le64(req->buf.in_dma);
|
|
sec_sqe3->data_dst_addr = cpu_to_le64(req->buf.out_dma);
|
|
} else {
|
|
sec_sqe3->data_src_addr = cpu_to_le64(req->in_dma);
|
|
sec_sqe3->data_dst_addr = cpu_to_le64(c_req->c_out_dma);
|
|
}
|
|
if (sec_sqe3->data_src_addr != sec_sqe3->data_dst_addr)
|
|
bd_param |= 0x1 << SEC_DE_OFFSET_V3;
|
|
|
|
sec_sqe3->c_mode_alg = ((u8)c_ctx->c_alg << SEC_CALG_OFFSET_V3) |
|
|
c_ctx->c_mode;
|
|
sec_sqe3->c_icv_key |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
|
|
SEC_CKEY_OFFSET_V3);
|
|
|
|
if (c_req->encrypt)
|
|
cipher = SEC_CIPHER_ENC;
|
|
else
|
|
cipher = SEC_CIPHER_DEC;
|
|
sec_sqe3->c_icv_key |= cpu_to_le16(cipher);
|
|
|
|
/* Set the CTR counter mode is 128bit rollover */
|
|
sec_sqe3->auth_mac_key = cpu_to_le32((u32)SEC_CTR_CNT_ROLLOVER <<
|
|
SEC_CTR_CNT_OFFSET);
|
|
|
|
if (req->use_pbuf) {
|
|
bd_param |= SEC_PBUF << SEC_SRC_SGL_OFFSET_V3;
|
|
bd_param |= SEC_PBUF << SEC_DST_SGL_OFFSET_V3;
|
|
} else {
|
|
bd_param |= SEC_SGL << SEC_SRC_SGL_OFFSET_V3;
|
|
bd_param |= SEC_SGL << SEC_DST_SGL_OFFSET_V3;
|
|
}
|
|
|
|
bd_param |= SEC_COMM_SCENE << SEC_SCENE_OFFSET_V3;
|
|
|
|
bd_param |= SEC_BD_TYPE3;
|
|
sec_sqe3->bd_param = cpu_to_le32(bd_param);
|
|
|
|
sec_sqe3->c_len_ivin |= cpu_to_le32(c_req->c_len);
|
|
sec_sqe3->tag = cpu_to_le64((unsigned long)req);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* increment counter (128-bit int) */
|
|
static void ctr_iv_inc(__u8 *counter, __u8 bits, __u32 nums)
|
|
{
|
|
do {
|
|
--bits;
|
|
nums += counter[bits];
|
|
counter[bits] = nums & BITS_MASK;
|
|
nums >>= BYTE_BITS;
|
|
} while (bits && nums);
|
|
}
|
|
|
|
static void sec_update_iv(struct sec_req *req, enum sec_alg_type alg_type)
|
|
{
|
|
struct aead_request *aead_req = req->aead_req.aead_req;
|
|
struct skcipher_request *sk_req = req->c_req.sk_req;
|
|
u32 iv_size = req->ctx->c_ctx.ivsize;
|
|
struct scatterlist *sgl;
|
|
unsigned int cryptlen;
|
|
size_t sz;
|
|
u8 *iv;
|
|
|
|
if (alg_type == SEC_SKCIPHER) {
|
|
sgl = req->c_req.encrypt ? sk_req->dst : sk_req->src;
|
|
iv = sk_req->iv;
|
|
cryptlen = sk_req->cryptlen;
|
|
} else {
|
|
sgl = req->c_req.encrypt ? aead_req->dst : aead_req->src;
|
|
iv = aead_req->iv;
|
|
cryptlen = aead_req->cryptlen;
|
|
}
|
|
|
|
if (req->ctx->c_ctx.c_mode == SEC_CMODE_CBC) {
|
|
sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), iv, iv_size,
|
|
cryptlen - iv_size);
|
|
if (unlikely(sz != iv_size))
|
|
dev_err(req->ctx->dev, "copy output iv error!\n");
|
|
} else {
|
|
sz = (cryptlen + iv_size - 1) / iv_size;
|
|
ctr_iv_inc(iv, iv_size, sz);
|
|
}
|
|
}
|
|
|
|
static void sec_skcipher_callback(struct sec_ctx *ctx, struct sec_req *req,
|
|
int err)
|
|
{
|
|
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
|
|
|
|
if (req->req_id >= 0)
|
|
sec_free_req_id(req);
|
|
|
|
/* IV output at encrypto of CBC/CTR mode */
|
|
if (!err && (ctx->c_ctx.c_mode == SEC_CMODE_CBC ||
|
|
ctx->c_ctx.c_mode == SEC_CMODE_CTR) && req->c_req.encrypt)
|
|
sec_update_iv(req, SEC_SKCIPHER);
|
|
|
|
crypto_request_complete(req->base, err);
|
|
sec_alg_send_backlog(ctx, qp_ctx);
|
|
}
|
|
|
|
static void set_aead_auth_iv(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
struct aead_request *aead_req = req->aead_req.aead_req;
|
|
struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
|
|
size_t authsize = crypto_aead_authsize(tfm);
|
|
struct sec_aead_req *a_req = &req->aead_req;
|
|
struct sec_cipher_req *c_req = &req->c_req;
|
|
u32 data_size = aead_req->cryptlen;
|
|
u8 flage = 0;
|
|
u8 cm, cl;
|
|
|
|
/* the specification has been checked in aead_iv_demension_check() */
|
|
cl = c_req->c_ivin[0] + 1;
|
|
c_req->c_ivin[ctx->c_ctx.ivsize - cl] = 0x00;
|
|
memset(&c_req->c_ivin[ctx->c_ctx.ivsize - cl], 0, cl);
|
|
c_req->c_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] = IV_CTR_INIT;
|
|
|
|
/* the last 3bit is L' */
|
|
flage |= c_req->c_ivin[0] & IV_CL_MASK;
|
|
|
|
/* the M' is bit3~bit5, the Flags is bit6 */
|
|
cm = (authsize - IV_CM_CAL_NUM) / IV_CM_CAL_NUM;
|
|
flage |= cm << IV_CM_OFFSET;
|
|
if (aead_req->assoclen)
|
|
flage |= 0x01 << IV_FLAGS_OFFSET;
|
|
|
|
memcpy(a_req->a_ivin, c_req->c_ivin, ctx->c_ctx.ivsize);
|
|
a_req->a_ivin[0] = flage;
|
|
|
|
/*
|
|
* the last 32bit is counter's initial number,
|
|
* but the nonce uses the first 16bit
|
|
* the tail 16bit fill with the cipher length
|
|
*/
|
|
if (!c_req->encrypt)
|
|
data_size = aead_req->cryptlen - authsize;
|
|
|
|
a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] =
|
|
data_size & IV_LAST_BYTE_MASK;
|
|
data_size >>= IV_BYTE_OFFSET;
|
|
a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE2] =
|
|
data_size & IV_LAST_BYTE_MASK;
|
|
}
|
|
|
|
static void sec_aead_set_iv(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
struct aead_request *aead_req = req->aead_req.aead_req;
|
|
struct sec_aead_req *a_req = &req->aead_req;
|
|
struct sec_cipher_req *c_req = &req->c_req;
|
|
|
|
memcpy(c_req->c_ivin, aead_req->iv, ctx->c_ctx.ivsize);
|
|
|
|
if (ctx->c_ctx.c_mode == SEC_CMODE_CCM) {
|
|
/*
|
|
* CCM 16Byte Cipher_IV: {1B_Flage,13B_IV,2B_counter},
|
|
* the counter must set to 0x01
|
|
* CCM 16Byte Auth_IV: {1B_AFlage,13B_IV,2B_Ptext_length}
|
|
*/
|
|
set_aead_auth_iv(ctx, req);
|
|
} else if (ctx->c_ctx.c_mode == SEC_CMODE_GCM) {
|
|
/* GCM 12Byte Cipher_IV == Auth_IV */
|
|
memcpy(a_req->a_ivin, c_req->c_ivin, SEC_AIV_SIZE);
|
|
}
|
|
}
|
|
|
|
static void sec_auth_bd_fill_xcm(struct sec_auth_ctx *ctx, int dir,
|
|
struct sec_req *req, struct sec_sqe *sec_sqe)
|
|
{
|
|
struct sec_aead_req *a_req = &req->aead_req;
|
|
struct aead_request *aq = a_req->aead_req;
|
|
struct crypto_aead *tfm = crypto_aead_reqtfm(aq);
|
|
size_t authsize = crypto_aead_authsize(tfm);
|
|
|
|
/* C_ICV_Len is MAC size, 0x4 ~ 0x10 */
|
|
sec_sqe->type2.icvw_kmode |= cpu_to_le16((u16)authsize);
|
|
|
|
/* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */
|
|
sec_sqe->type2.a_key_addr = sec_sqe->type2.c_key_addr;
|
|
sec_sqe->type2.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma);
|
|
sec_sqe->type_cipher_auth |= SEC_NO_AUTH << SEC_AUTH_OFFSET;
|
|
|
|
if (dir)
|
|
sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
|
|
else
|
|
sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;
|
|
|
|
sec_sqe->type2.alen_ivllen = cpu_to_le32(aq->assoclen);
|
|
sec_sqe->type2.auth_src_offset = cpu_to_le16(0x0);
|
|
sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
|
|
|
|
sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
|
|
}
|
|
|
|
static void sec_auth_bd_fill_xcm_v3(struct sec_auth_ctx *ctx, int dir,
|
|
struct sec_req *req, struct sec_sqe3 *sqe3)
|
|
{
|
|
struct sec_aead_req *a_req = &req->aead_req;
|
|
struct aead_request *aq = a_req->aead_req;
|
|
struct crypto_aead *tfm = crypto_aead_reqtfm(aq);
|
|
size_t authsize = crypto_aead_authsize(tfm);
|
|
|
|
/* C_ICV_Len is MAC size, 0x4 ~ 0x10 */
|
|
sqe3->c_icv_key |= cpu_to_le16((u16)authsize << SEC_MAC_OFFSET_V3);
|
|
|
|
/* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */
|
|
sqe3->a_key_addr = sqe3->c_key_addr;
|
|
sqe3->auth_ivin.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma);
|
|
sqe3->auth_mac_key |= SEC_NO_AUTH;
|
|
|
|
if (dir)
|
|
sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3;
|
|
else
|
|
sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3;
|
|
|
|
sqe3->a_len_key = cpu_to_le32(aq->assoclen);
|
|
sqe3->auth_src_offset = cpu_to_le16(0x0);
|
|
sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
|
|
sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma);
|
|
}
|
|
|
|
static void sec_auth_bd_fill_ex(struct sec_auth_ctx *ctx, int dir,
|
|
struct sec_req *req, struct sec_sqe *sec_sqe)
|
|
{
|
|
struct sec_aead_req *a_req = &req->aead_req;
|
|
struct sec_cipher_req *c_req = &req->c_req;
|
|
struct aead_request *aq = a_req->aead_req;
|
|
struct crypto_aead *tfm = crypto_aead_reqtfm(aq);
|
|
size_t authsize = crypto_aead_authsize(tfm);
|
|
|
|
sec_sqe->type2.a_key_addr = cpu_to_le64(ctx->a_key_dma);
|
|
|
|
sec_sqe->type2.mac_key_alg = cpu_to_le32(BYTES_TO_WORDS(authsize));
|
|
|
|
sec_sqe->type2.mac_key_alg |=
|
|
cpu_to_le32((u32)BYTES_TO_WORDS(ctx->a_key_len) << SEC_AKEY_OFFSET);
|
|
|
|
sec_sqe->type2.mac_key_alg |=
|
|
cpu_to_le32((u32)(ctx->a_alg) << SEC_AEAD_ALG_OFFSET);
|
|
|
|
if (dir) {
|
|
sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE1 << SEC_AUTH_OFFSET;
|
|
sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
|
|
} else {
|
|
sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE2 << SEC_AUTH_OFFSET;
|
|
sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;
|
|
}
|
|
sec_sqe->type2.alen_ivllen = cpu_to_le32(c_req->c_len + aq->assoclen);
|
|
|
|
sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
|
|
|
|
sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
|
|
}
|
|
|
|
static int sec_aead_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
|
|
struct sec_sqe *sec_sqe = &req->sec_sqe;
|
|
int ret;
|
|
|
|
ret = sec_skcipher_bd_fill(ctx, req);
|
|
if (unlikely(ret)) {
|
|
dev_err(ctx->dev, "skcipher bd fill is error!\n");
|
|
return ret;
|
|
}
|
|
|
|
if (ctx->c_ctx.c_mode == SEC_CMODE_CCM ||
|
|
ctx->c_ctx.c_mode == SEC_CMODE_GCM)
|
|
sec_auth_bd_fill_xcm(auth_ctx, req->c_req.encrypt, req, sec_sqe);
|
|
else
|
|
sec_auth_bd_fill_ex(auth_ctx, req->c_req.encrypt, req, sec_sqe);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sec_auth_bd_fill_ex_v3(struct sec_auth_ctx *ctx, int dir,
|
|
struct sec_req *req, struct sec_sqe3 *sqe3)
|
|
{
|
|
struct sec_aead_req *a_req = &req->aead_req;
|
|
struct sec_cipher_req *c_req = &req->c_req;
|
|
struct aead_request *aq = a_req->aead_req;
|
|
struct crypto_aead *tfm = crypto_aead_reqtfm(aq);
|
|
size_t authsize = crypto_aead_authsize(tfm);
|
|
|
|
sqe3->a_key_addr = cpu_to_le64(ctx->a_key_dma);
|
|
|
|
sqe3->auth_mac_key |=
|
|
cpu_to_le32(BYTES_TO_WORDS(authsize) << SEC_MAC_OFFSET_V3);
|
|
|
|
sqe3->auth_mac_key |=
|
|
cpu_to_le32((u32)BYTES_TO_WORDS(ctx->a_key_len) << SEC_AKEY_OFFSET_V3);
|
|
|
|
sqe3->auth_mac_key |=
|
|
cpu_to_le32((u32)(ctx->a_alg) << SEC_AUTH_ALG_OFFSET_V3);
|
|
|
|
if (dir) {
|
|
sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE1);
|
|
sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3;
|
|
} else {
|
|
sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE2);
|
|
sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3;
|
|
}
|
|
sqe3->a_len_key = cpu_to_le32(c_req->c_len + aq->assoclen);
|
|
|
|
sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
|
|
|
|
sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma);
|
|
}
|
|
|
|
static int sec_aead_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
|
|
struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3;
|
|
int ret;
|
|
|
|
ret = sec_skcipher_bd_fill_v3(ctx, req);
|
|
if (unlikely(ret)) {
|
|
dev_err(ctx->dev, "skcipher bd3 fill is error!\n");
|
|
return ret;
|
|
}
|
|
|
|
if (ctx->c_ctx.c_mode == SEC_CMODE_CCM ||
|
|
ctx->c_ctx.c_mode == SEC_CMODE_GCM)
|
|
sec_auth_bd_fill_xcm_v3(auth_ctx, req->c_req.encrypt,
|
|
req, sec_sqe3);
|
|
else
|
|
sec_auth_bd_fill_ex_v3(auth_ctx, req->c_req.encrypt,
|
|
req, sec_sqe3);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sec_aead_callback(struct sec_ctx *c, struct sec_req *req, int err)
|
|
{
|
|
struct aead_request *a_req = req->aead_req.aead_req;
|
|
struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
|
|
size_t authsize = crypto_aead_authsize(tfm);
|
|
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
|
|
size_t sz;
|
|
|
|
if (!err && req->c_req.encrypt) {
|
|
if (c->c_ctx.c_mode == SEC_CMODE_CBC)
|
|
sec_update_iv(req, SEC_AEAD);
|
|
|
|
sz = sg_pcopy_from_buffer(a_req->dst, sg_nents(a_req->dst), req->aead_req.out_mac,
|
|
authsize, a_req->cryptlen + a_req->assoclen);
|
|
if (unlikely(sz != authsize)) {
|
|
dev_err(c->dev, "copy out mac err!\n");
|
|
err = -EINVAL;
|
|
}
|
|
}
|
|
|
|
if (req->req_id >= 0)
|
|
sec_free_req_id(req);
|
|
|
|
crypto_request_complete(req->base, err);
|
|
sec_alg_send_backlog(c, qp_ctx);
|
|
}
|
|
|
|
static void sec_request_uninit(struct sec_req *req)
|
|
{
|
|
if (req->req_id >= 0)
|
|
sec_free_req_id(req);
|
|
}
|
|
|
|
static int sec_request_init(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
struct sec_qp_ctx *qp_ctx;
|
|
int i = 0;
|
|
|
|
do {
|
|
qp_ctx = &ctx->qp_ctx[i];
|
|
req->req_id = sec_alloc_req_id(req, qp_ctx);
|
|
} while (req->req_id < 0 && ++i < ctx->sec->ctx_q_num);
|
|
|
|
req->qp_ctx = qp_ctx;
|
|
req->backlog = &qp_ctx->backlog;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sec_process(struct sec_ctx *ctx, struct sec_req *req)
|
|
{
|
|
int ret;
|
|
|
|
ret = sec_request_init(ctx, req);
|
|
if (unlikely(ret))
|
|
return ret;
|
|
|
|
ret = sec_request_transfer(ctx, req);
|
|
if (unlikely(ret))
|
|
goto err_uninit_req;
|
|
|
|
/* Output IV as decrypto */
|
|
if (!req->c_req.encrypt && (ctx->c_ctx.c_mode == SEC_CMODE_CBC ||
|
|
ctx->c_ctx.c_mode == SEC_CMODE_CTR))
|
|
sec_update_iv(req, ctx->alg_type);
|
|
|
|
ret = ctx->req_op->bd_send(ctx, req);
|
|
if (unlikely((ret != -EBUSY && ret != -EINPROGRESS))) {
|
|
dev_err_ratelimited(ctx->dev, "send sec request failed!\n");
|
|
goto err_send_req;
|
|
}
|
|
|
|
return ret;
|
|
|
|
err_send_req:
|
|
/* As failing, restore the IV from user */
|
|
if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt) {
|
|
if (ctx->alg_type == SEC_SKCIPHER)
|
|
memcpy(req->c_req.sk_req->iv, req->c_req.c_ivin,
|
|
ctx->c_ctx.ivsize);
|
|
else
|
|
memcpy(req->aead_req.aead_req->iv, req->c_req.c_ivin,
|
|
ctx->c_ctx.ivsize);
|
|
}
|
|
|
|
sec_request_untransfer(ctx, req);
|
|
|
|
err_uninit_req:
|
|
sec_request_uninit(req);
|
|
if (ctx->alg_type == SEC_AEAD)
|
|
ret = sec_aead_soft_crypto(ctx, req->aead_req.aead_req,
|
|
req->c_req.encrypt);
|
|
else
|
|
ret = sec_skcipher_soft_crypto(ctx, req->c_req.sk_req,
|
|
req->c_req.encrypt);
|
|
return ret;
|
|
}
|
|
|
|
static const struct sec_req_op sec_skcipher_req_ops = {
|
|
.buf_map = sec_skcipher_sgl_map,
|
|
.buf_unmap = sec_skcipher_sgl_unmap,
|
|
.do_transfer = sec_skcipher_copy_iv,
|
|
.bd_fill = sec_skcipher_bd_fill,
|
|
.bd_send = sec_bd_send,
|
|
.callback = sec_skcipher_callback,
|
|
.process = sec_process,
|
|
};
|
|
|
|
static const struct sec_req_op sec_aead_req_ops = {
|
|
.buf_map = sec_aead_sgl_map,
|
|
.buf_unmap = sec_aead_sgl_unmap,
|
|
.do_transfer = sec_aead_set_iv,
|
|
.bd_fill = sec_aead_bd_fill,
|
|
.bd_send = sec_bd_send,
|
|
.callback = sec_aead_callback,
|
|
.process = sec_process,
|
|
};
|
|
|
|
static const struct sec_req_op sec_skcipher_req_ops_v3 = {
|
|
.buf_map = sec_skcipher_sgl_map,
|
|
.buf_unmap = sec_skcipher_sgl_unmap,
|
|
.do_transfer = sec_skcipher_copy_iv,
|
|
.bd_fill = sec_skcipher_bd_fill_v3,
|
|
.bd_send = sec_bd_send,
|
|
.callback = sec_skcipher_callback,
|
|
.process = sec_process,
|
|
};
|
|
|
|
static const struct sec_req_op sec_aead_req_ops_v3 = {
|
|
.buf_map = sec_aead_sgl_map,
|
|
.buf_unmap = sec_aead_sgl_unmap,
|
|
.do_transfer = sec_aead_set_iv,
|
|
.bd_fill = sec_aead_bd_fill_v3,
|
|
.bd_send = sec_bd_send,
|
|
.callback = sec_aead_callback,
|
|
.process = sec_process,
|
|
};
|
|
|
|
static int sec_skcipher_ctx_init(struct crypto_skcipher *tfm)
|
|
{
|
|
struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
int ret;
|
|
|
|
ret = sec_skcipher_init(tfm);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (ctx->sec->qm.ver < QM_HW_V3) {
|
|
ctx->type_supported = SEC_BD_TYPE2;
|
|
ctx->req_op = &sec_skcipher_req_ops;
|
|
} else {
|
|
ctx->type_supported = SEC_BD_TYPE3;
|
|
ctx->req_op = &sec_skcipher_req_ops_v3;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void sec_skcipher_ctx_exit(struct crypto_skcipher *tfm)
|
|
{
|
|
sec_skcipher_uninit(tfm);
|
|
}
|
|
|
|
static int sec_aead_init(struct crypto_aead *tfm)
|
|
{
|
|
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
|
|
int ret;
|
|
|
|
crypto_aead_set_reqsize_dma(tfm, sizeof(struct sec_req));
|
|
ctx->alg_type = SEC_AEAD;
|
|
ctx->c_ctx.ivsize = crypto_aead_ivsize(tfm);
|
|
if (ctx->c_ctx.ivsize < SEC_AIV_SIZE ||
|
|
ctx->c_ctx.ivsize > SEC_IV_SIZE) {
|
|
pr_err("get error aead iv size!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = sec_ctx_base_init(ctx);
|
|
if (ret)
|
|
return ret;
|
|
if (ctx->sec->qm.ver < QM_HW_V3) {
|
|
ctx->type_supported = SEC_BD_TYPE2;
|
|
ctx->req_op = &sec_aead_req_ops;
|
|
} else {
|
|
ctx->type_supported = SEC_BD_TYPE3;
|
|
ctx->req_op = &sec_aead_req_ops_v3;
|
|
}
|
|
|
|
ret = sec_auth_init(ctx);
|
|
if (ret)
|
|
goto err_auth_init;
|
|
|
|
ret = sec_cipher_init(ctx);
|
|
if (ret)
|
|
goto err_cipher_init;
|
|
|
|
return ret;
|
|
|
|
err_cipher_init:
|
|
sec_auth_uninit(ctx);
|
|
err_auth_init:
|
|
sec_ctx_base_uninit(ctx);
|
|
return ret;
|
|
}
|
|
|
|
static void sec_aead_exit(struct crypto_aead *tfm)
|
|
{
|
|
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
|
|
|
|
sec_cipher_uninit(ctx);
|
|
sec_auth_uninit(ctx);
|
|
sec_ctx_base_uninit(ctx);
|
|
}
|
|
|
|
static int sec_aead_ctx_init(struct crypto_aead *tfm, const char *hash_name)
|
|
{
|
|
struct aead_alg *alg = crypto_aead_alg(tfm);
|
|
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
|
|
struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
|
|
const char *aead_name = alg->base.cra_name;
|
|
int ret;
|
|
|
|
ret = sec_aead_init(tfm);
|
|
if (ret) {
|
|
pr_err("hisi_sec2: aead init error!\n");
|
|
return ret;
|
|
}
|
|
|
|
a_ctx->hash_tfm = crypto_alloc_shash(hash_name, 0, 0);
|
|
if (IS_ERR(a_ctx->hash_tfm)) {
|
|
dev_err(ctx->dev, "aead alloc shash error!\n");
|
|
sec_aead_exit(tfm);
|
|
return PTR_ERR(a_ctx->hash_tfm);
|
|
}
|
|
|
|
a_ctx->fallback_aead_tfm = crypto_alloc_aead(aead_name, 0,
|
|
CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC);
|
|
if (IS_ERR(a_ctx->fallback_aead_tfm)) {
|
|
dev_err(ctx->dev, "aead driver alloc fallback tfm error!\n");
|
|
crypto_free_shash(ctx->a_ctx.hash_tfm);
|
|
sec_aead_exit(tfm);
|
|
return PTR_ERR(a_ctx->fallback_aead_tfm);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sec_aead_ctx_exit(struct crypto_aead *tfm)
|
|
{
|
|
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
|
|
|
|
crypto_free_aead(ctx->a_ctx.fallback_aead_tfm);
|
|
crypto_free_shash(ctx->a_ctx.hash_tfm);
|
|
sec_aead_exit(tfm);
|
|
}
|
|
|
|
static int sec_aead_xcm_ctx_init(struct crypto_aead *tfm)
|
|
{
|
|
struct aead_alg *alg = crypto_aead_alg(tfm);
|
|
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
|
|
struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
|
|
const char *aead_name = alg->base.cra_name;
|
|
int ret;
|
|
|
|
ret = sec_aead_init(tfm);
|
|
if (ret) {
|
|
dev_err(ctx->dev, "hisi_sec2: aead xcm init error!\n");
|
|
return ret;
|
|
}
|
|
|
|
a_ctx->fallback_aead_tfm = crypto_alloc_aead(aead_name, 0,
|
|
CRYPTO_ALG_NEED_FALLBACK |
|
|
CRYPTO_ALG_ASYNC);
|
|
if (IS_ERR(a_ctx->fallback_aead_tfm)) {
|
|
dev_err(ctx->dev, "aead driver alloc fallback tfm error!\n");
|
|
sec_aead_exit(tfm);
|
|
return PTR_ERR(a_ctx->fallback_aead_tfm);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sec_aead_xcm_ctx_exit(struct crypto_aead *tfm)
|
|
{
|
|
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
|
|
|
|
crypto_free_aead(ctx->a_ctx.fallback_aead_tfm);
|
|
sec_aead_exit(tfm);
|
|
}
|
|
|
|
static int sec_aead_sha1_ctx_init(struct crypto_aead *tfm)
|
|
{
|
|
return sec_aead_ctx_init(tfm, "sha1");
|
|
}
|
|
|
|
static int sec_aead_sha256_ctx_init(struct crypto_aead *tfm)
|
|
{
|
|
return sec_aead_ctx_init(tfm, "sha256");
|
|
}
|
|
|
|
static int sec_aead_sha512_ctx_init(struct crypto_aead *tfm)
|
|
{
|
|
return sec_aead_ctx_init(tfm, "sha512");
|
|
}
|
|
|
|
static int sec_skcipher_cryptlen_check(struct sec_ctx *ctx, struct sec_req *sreq)
|
|
{
|
|
u32 cryptlen = sreq->c_req.sk_req->cryptlen;
|
|
struct device *dev = ctx->dev;
|
|
u8 c_mode = ctx->c_ctx.c_mode;
|
|
int ret = 0;
|
|
|
|
switch (c_mode) {
|
|
case SEC_CMODE_XTS:
|
|
if (unlikely(cryptlen < AES_BLOCK_SIZE)) {
|
|
dev_err(dev, "skcipher XTS mode input length error!\n");
|
|
ret = -EINVAL;
|
|
}
|
|
break;
|
|
case SEC_CMODE_ECB:
|
|
case SEC_CMODE_CBC:
|
|
if (unlikely(cryptlen & (AES_BLOCK_SIZE - 1))) {
|
|
dev_err(dev, "skcipher AES input length error!\n");
|
|
ret = -EINVAL;
|
|
}
|
|
break;
|
|
case SEC_CMODE_CTR:
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int sec_skcipher_param_check(struct sec_ctx *ctx,
|
|
struct sec_req *sreq, bool *need_fallback)
|
|
{
|
|
struct skcipher_request *sk_req = sreq->c_req.sk_req;
|
|
struct device *dev = ctx->dev;
|
|
u8 c_alg = ctx->c_ctx.c_alg;
|
|
|
|
if (unlikely(!sk_req->src || !sk_req->dst)) {
|
|
dev_err(dev, "skcipher input param error!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (sk_req->cryptlen > MAX_INPUT_DATA_LEN)
|
|
*need_fallback = true;
|
|
|
|
sreq->c_req.c_len = sk_req->cryptlen;
|
|
|
|
if (ctx->pbuf_supported && sk_req->cryptlen <= SEC_PBUF_SZ)
|
|
sreq->use_pbuf = true;
|
|
else
|
|
sreq->use_pbuf = false;
|
|
|
|
if (c_alg == SEC_CALG_3DES) {
|
|
if (unlikely(sk_req->cryptlen & (DES3_EDE_BLOCK_SIZE - 1))) {
|
|
dev_err(dev, "skcipher 3des input length error!\n");
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
} else if (c_alg == SEC_CALG_AES || c_alg == SEC_CALG_SM4) {
|
|
return sec_skcipher_cryptlen_check(ctx, sreq);
|
|
}
|
|
|
|
dev_err(dev, "skcipher algorithm error!\n");
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int sec_skcipher_soft_crypto(struct sec_ctx *ctx,
|
|
struct skcipher_request *sreq, bool encrypt)
|
|
{
|
|
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
|
|
SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, c_ctx->fbtfm);
|
|
struct device *dev = ctx->dev;
|
|
int ret;
|
|
|
|
if (!c_ctx->fbtfm) {
|
|
dev_err_ratelimited(dev, "the soft tfm isn't supported in the current system.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
skcipher_request_set_sync_tfm(subreq, c_ctx->fbtfm);
|
|
|
|
/* software need sync mode to do crypto */
|
|
skcipher_request_set_callback(subreq, sreq->base.flags,
|
|
NULL, NULL);
|
|
skcipher_request_set_crypt(subreq, sreq->src, sreq->dst,
|
|
sreq->cryptlen, sreq->iv);
|
|
if (encrypt)
|
|
ret = crypto_skcipher_encrypt(subreq);
|
|
else
|
|
ret = crypto_skcipher_decrypt(subreq);
|
|
|
|
skcipher_request_zero(subreq);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int sec_skcipher_crypto(struct skcipher_request *sk_req, bool encrypt)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(sk_req);
|
|
struct sec_req *req = skcipher_request_ctx_dma(sk_req);
|
|
struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
bool need_fallback = false;
|
|
int ret;
|
|
|
|
if (!sk_req->cryptlen) {
|
|
if (ctx->c_ctx.c_mode == SEC_CMODE_XTS)
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
req->flag = sk_req->base.flags;
|
|
req->c_req.sk_req = sk_req;
|
|
req->c_req.encrypt = encrypt;
|
|
req->ctx = ctx;
|
|
req->base = &sk_req->base;
|
|
|
|
ret = sec_skcipher_param_check(ctx, req, &need_fallback);
|
|
if (unlikely(ret))
|
|
return -EINVAL;
|
|
|
|
if (unlikely(ctx->c_ctx.fallback || need_fallback))
|
|
return sec_skcipher_soft_crypto(ctx, sk_req, encrypt);
|
|
|
|
return ctx->req_op->process(ctx, req);
|
|
}
|
|
|
|
static int sec_skcipher_encrypt(struct skcipher_request *sk_req)
|
|
{
|
|
return sec_skcipher_crypto(sk_req, true);
|
|
}
|
|
|
|
static int sec_skcipher_decrypt(struct skcipher_request *sk_req)
|
|
{
|
|
return sec_skcipher_crypto(sk_req, false);
|
|
}
|
|
|
|
#define SEC_SKCIPHER_ALG(sec_cra_name, sec_set_key, \
|
|
sec_min_key_size, sec_max_key_size, blk_size, iv_size)\
|
|
{\
|
|
.base = {\
|
|
.cra_name = sec_cra_name,\
|
|
.cra_driver_name = "hisi_sec_"sec_cra_name,\
|
|
.cra_priority = SEC_PRIORITY,\
|
|
.cra_flags = CRYPTO_ALG_ASYNC |\
|
|
CRYPTO_ALG_NEED_FALLBACK,\
|
|
.cra_blocksize = blk_size,\
|
|
.cra_ctxsize = sizeof(struct sec_ctx),\
|
|
.cra_module = THIS_MODULE,\
|
|
},\
|
|
.init = sec_skcipher_ctx_init,\
|
|
.exit = sec_skcipher_ctx_exit,\
|
|
.setkey = sec_set_key,\
|
|
.decrypt = sec_skcipher_decrypt,\
|
|
.encrypt = sec_skcipher_encrypt,\
|
|
.min_keysize = sec_min_key_size,\
|
|
.max_keysize = sec_max_key_size,\
|
|
.ivsize = iv_size,\
|
|
}
|
|
|
|
static struct sec_skcipher sec_skciphers[] = {
|
|
{
|
|
.alg_msk = BIT(0),
|
|
.alg = SEC_SKCIPHER_ALG("ecb(aes)", sec_setkey_aes_ecb, AES_MIN_KEY_SIZE,
|
|
AES_MAX_KEY_SIZE, AES_BLOCK_SIZE, 0),
|
|
},
|
|
{
|
|
.alg_msk = BIT(1),
|
|
.alg = SEC_SKCIPHER_ALG("cbc(aes)", sec_setkey_aes_cbc, AES_MIN_KEY_SIZE,
|
|
AES_MAX_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
|
|
},
|
|
{
|
|
.alg_msk = BIT(2),
|
|
.alg = SEC_SKCIPHER_ALG("ctr(aes)", sec_setkey_aes_ctr, AES_MIN_KEY_SIZE,
|
|
AES_MAX_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
|
|
},
|
|
{
|
|
.alg_msk = BIT(3),
|
|
.alg = SEC_SKCIPHER_ALG("xts(aes)", sec_setkey_aes_xts, SEC_XTS_MIN_KEY_SIZE,
|
|
SEC_XTS_MAX_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
|
|
},
|
|
{
|
|
.alg_msk = BIT(12),
|
|
.alg = SEC_SKCIPHER_ALG("cbc(sm4)", sec_setkey_sm4_cbc, AES_MIN_KEY_SIZE,
|
|
AES_MIN_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
|
|
},
|
|
{
|
|
.alg_msk = BIT(13),
|
|
.alg = SEC_SKCIPHER_ALG("ctr(sm4)", sec_setkey_sm4_ctr, AES_MIN_KEY_SIZE,
|
|
AES_MIN_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
|
|
},
|
|
{
|
|
.alg_msk = BIT(14),
|
|
.alg = SEC_SKCIPHER_ALG("xts(sm4)", sec_setkey_sm4_xts, SEC_XTS_MIN_KEY_SIZE,
|
|
SEC_XTS_MIN_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
|
|
},
|
|
{
|
|
.alg_msk = BIT(23),
|
|
.alg = SEC_SKCIPHER_ALG("ecb(des3_ede)", sec_setkey_3des_ecb, SEC_DES3_3KEY_SIZE,
|
|
SEC_DES3_3KEY_SIZE, DES3_EDE_BLOCK_SIZE, 0),
|
|
},
|
|
{
|
|
.alg_msk = BIT(24),
|
|
.alg = SEC_SKCIPHER_ALG("cbc(des3_ede)", sec_setkey_3des_cbc, SEC_DES3_3KEY_SIZE,
|
|
SEC_DES3_3KEY_SIZE, DES3_EDE_BLOCK_SIZE,
|
|
DES3_EDE_BLOCK_SIZE),
|
|
},
|
|
};
|
|
|
|
static int aead_iv_demension_check(struct aead_request *aead_req)
|
|
{
|
|
u8 cl;
|
|
|
|
cl = aead_req->iv[0] + 1;
|
|
if (cl < IV_CL_MIN || cl > IV_CL_MAX)
|
|
return -EINVAL;
|
|
|
|
if (cl < IV_CL_MID && aead_req->cryptlen >> (BYTE_BITS * cl))
|
|
return -EOVERFLOW;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sec_aead_spec_check(struct sec_ctx *ctx, struct sec_req *sreq)
|
|
{
|
|
struct aead_request *req = sreq->aead_req.aead_req;
|
|
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
|
|
size_t sz = crypto_aead_authsize(tfm);
|
|
u8 c_mode = ctx->c_ctx.c_mode;
|
|
int ret;
|
|
|
|
if (unlikely(ctx->sec->qm.ver == QM_HW_V2 && !sreq->c_req.c_len))
|
|
return -EINVAL;
|
|
|
|
if (unlikely(req->cryptlen + req->assoclen > MAX_INPUT_DATA_LEN ||
|
|
req->assoclen > SEC_MAX_AAD_LEN))
|
|
return -EINVAL;
|
|
|
|
if (c_mode == SEC_CMODE_CCM) {
|
|
if (unlikely(req->assoclen > SEC_MAX_CCM_AAD_LEN))
|
|
return -EINVAL;
|
|
|
|
ret = aead_iv_demension_check(req);
|
|
if (unlikely(ret))
|
|
return -EINVAL;
|
|
} else if (c_mode == SEC_CMODE_CBC) {
|
|
if (unlikely(sz & WORD_MASK))
|
|
return -EINVAL;
|
|
if (unlikely(ctx->a_ctx.a_key_len & WORD_MASK))
|
|
return -EINVAL;
|
|
} else if (c_mode == SEC_CMODE_GCM) {
|
|
if (unlikely(sz < SEC_GCM_MIN_AUTH_SZ))
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sec_aead_param_check(struct sec_ctx *ctx, struct sec_req *sreq, bool *need_fallback)
|
|
{
|
|
struct aead_request *req = sreq->aead_req.aead_req;
|
|
struct device *dev = ctx->dev;
|
|
u8 c_alg = ctx->c_ctx.c_alg;
|
|
|
|
if (unlikely(!req->src || !req->dst)) {
|
|
dev_err(dev, "aead input param error!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (unlikely(ctx->c_ctx.c_mode == SEC_CMODE_CBC &&
|
|
sreq->c_req.c_len & (AES_BLOCK_SIZE - 1))) {
|
|
dev_err(dev, "aead cbc mode input data length error!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Support AES or SM4 */
|
|
if (unlikely(c_alg != SEC_CALG_AES && c_alg != SEC_CALG_SM4)) {
|
|
dev_err(dev, "aead crypto alg error!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (unlikely(sec_aead_spec_check(ctx, sreq))) {
|
|
*need_fallback = true;
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (ctx->pbuf_supported && (req->cryptlen + req->assoclen) <=
|
|
SEC_PBUF_SZ)
|
|
sreq->use_pbuf = true;
|
|
else
|
|
sreq->use_pbuf = false;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sec_aead_soft_crypto(struct sec_ctx *ctx,
|
|
struct aead_request *aead_req,
|
|
bool encrypt)
|
|
{
|
|
struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
|
|
struct aead_request *subreq;
|
|
int ret;
|
|
|
|
subreq = aead_request_alloc(a_ctx->fallback_aead_tfm, GFP_KERNEL);
|
|
if (!subreq)
|
|
return -ENOMEM;
|
|
|
|
aead_request_set_tfm(subreq, a_ctx->fallback_aead_tfm);
|
|
aead_request_set_callback(subreq, aead_req->base.flags,
|
|
aead_req->base.complete, aead_req->base.data);
|
|
aead_request_set_crypt(subreq, aead_req->src, aead_req->dst,
|
|
aead_req->cryptlen, aead_req->iv);
|
|
aead_request_set_ad(subreq, aead_req->assoclen);
|
|
|
|
if (encrypt)
|
|
ret = crypto_aead_encrypt(subreq);
|
|
else
|
|
ret = crypto_aead_decrypt(subreq);
|
|
aead_request_free(subreq);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int sec_aead_crypto(struct aead_request *a_req, bool encrypt)
|
|
{
|
|
struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
|
|
struct sec_req *req = aead_request_ctx_dma(a_req);
|
|
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
|
|
size_t sz = crypto_aead_authsize(tfm);
|
|
bool need_fallback = false;
|
|
int ret;
|
|
|
|
req->flag = a_req->base.flags;
|
|
req->aead_req.aead_req = a_req;
|
|
req->c_req.encrypt = encrypt;
|
|
req->ctx = ctx;
|
|
req->base = &a_req->base;
|
|
req->c_req.c_len = a_req->cryptlen - (req->c_req.encrypt ? 0 : sz);
|
|
|
|
ret = sec_aead_param_check(ctx, req, &need_fallback);
|
|
if (unlikely(ret)) {
|
|
if (need_fallback)
|
|
return sec_aead_soft_crypto(ctx, a_req, encrypt);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return ctx->req_op->process(ctx, req);
|
|
}
|
|
|
|
static int sec_aead_encrypt(struct aead_request *a_req)
|
|
{
|
|
return sec_aead_crypto(a_req, true);
|
|
}
|
|
|
|
static int sec_aead_decrypt(struct aead_request *a_req)
|
|
{
|
|
return sec_aead_crypto(a_req, false);
|
|
}
|
|
|
|
#define SEC_AEAD_ALG(sec_cra_name, sec_set_key, ctx_init,\
|
|
ctx_exit, blk_size, iv_size, max_authsize)\
|
|
{\
|
|
.base = {\
|
|
.cra_name = sec_cra_name,\
|
|
.cra_driver_name = "hisi_sec_"sec_cra_name,\
|
|
.cra_priority = SEC_PRIORITY,\
|
|
.cra_flags = CRYPTO_ALG_ASYNC |\
|
|
CRYPTO_ALG_NEED_FALLBACK,\
|
|
.cra_blocksize = blk_size,\
|
|
.cra_ctxsize = sizeof(struct sec_ctx),\
|
|
.cra_module = THIS_MODULE,\
|
|
},\
|
|
.init = ctx_init,\
|
|
.exit = ctx_exit,\
|
|
.setkey = sec_set_key,\
|
|
.setauthsize = sec_aead_setauthsize,\
|
|
.decrypt = sec_aead_decrypt,\
|
|
.encrypt = sec_aead_encrypt,\
|
|
.ivsize = iv_size,\
|
|
.maxauthsize = max_authsize,\
|
|
}
|
|
|
|
static struct sec_aead sec_aeads[] = {
|
|
{
|
|
.alg_msk = BIT(6),
|
|
.alg = SEC_AEAD_ALG("ccm(aes)", sec_setkey_aes_ccm, sec_aead_xcm_ctx_init,
|
|
sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE,
|
|
AES_BLOCK_SIZE),
|
|
},
|
|
{
|
|
.alg_msk = BIT(7),
|
|
.alg = SEC_AEAD_ALG("gcm(aes)", sec_setkey_aes_gcm, sec_aead_xcm_ctx_init,
|
|
sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, SEC_AIV_SIZE,
|
|
AES_BLOCK_SIZE),
|
|
},
|
|
{
|
|
.alg_msk = BIT(17),
|
|
.alg = SEC_AEAD_ALG("ccm(sm4)", sec_setkey_sm4_ccm, sec_aead_xcm_ctx_init,
|
|
sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE,
|
|
AES_BLOCK_SIZE),
|
|
},
|
|
{
|
|
.alg_msk = BIT(18),
|
|
.alg = SEC_AEAD_ALG("gcm(sm4)", sec_setkey_sm4_gcm, sec_aead_xcm_ctx_init,
|
|
sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, SEC_AIV_SIZE,
|
|
AES_BLOCK_SIZE),
|
|
},
|
|
{
|
|
.alg_msk = BIT(43),
|
|
.alg = SEC_AEAD_ALG("authenc(hmac(sha1),cbc(aes))", sec_setkey_aes_cbc_sha1,
|
|
sec_aead_sha1_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE,
|
|
AES_BLOCK_SIZE, SHA1_DIGEST_SIZE),
|
|
},
|
|
{
|
|
.alg_msk = BIT(44),
|
|
.alg = SEC_AEAD_ALG("authenc(hmac(sha256),cbc(aes))", sec_setkey_aes_cbc_sha256,
|
|
sec_aead_sha256_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE,
|
|
AES_BLOCK_SIZE, SHA256_DIGEST_SIZE),
|
|
},
|
|
{
|
|
.alg_msk = BIT(45),
|
|
.alg = SEC_AEAD_ALG("authenc(hmac(sha512),cbc(aes))", sec_setkey_aes_cbc_sha512,
|
|
sec_aead_sha512_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE,
|
|
AES_BLOCK_SIZE, SHA512_DIGEST_SIZE),
|
|
},
|
|
};
|
|
|
|
static void sec_unregister_skcipher(u64 alg_mask, int end)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < end; i++)
|
|
if (sec_skciphers[i].alg_msk & alg_mask)
|
|
crypto_unregister_skcipher(&sec_skciphers[i].alg);
|
|
}
|
|
|
|
static int sec_register_skcipher(u64 alg_mask)
|
|
{
|
|
int i, ret, count;
|
|
|
|
count = ARRAY_SIZE(sec_skciphers);
|
|
|
|
for (i = 0; i < count; i++) {
|
|
if (!(sec_skciphers[i].alg_msk & alg_mask))
|
|
continue;
|
|
|
|
ret = crypto_register_skcipher(&sec_skciphers[i].alg);
|
|
if (ret)
|
|
goto err;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err:
|
|
sec_unregister_skcipher(alg_mask, i);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void sec_unregister_aead(u64 alg_mask, int end)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < end; i++)
|
|
if (sec_aeads[i].alg_msk & alg_mask)
|
|
crypto_unregister_aead(&sec_aeads[i].alg);
|
|
}
|
|
|
|
static int sec_register_aead(u64 alg_mask)
|
|
{
|
|
int i, ret, count;
|
|
|
|
count = ARRAY_SIZE(sec_aeads);
|
|
|
|
for (i = 0; i < count; i++) {
|
|
if (!(sec_aeads[i].alg_msk & alg_mask))
|
|
continue;
|
|
|
|
ret = crypto_register_aead(&sec_aeads[i].alg);
|
|
if (ret)
|
|
goto err;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err:
|
|
sec_unregister_aead(alg_mask, i);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int sec_register_to_crypto(struct hisi_qm *qm)
|
|
{
|
|
u64 alg_mask;
|
|
int ret = 0;
|
|
|
|
alg_mask = sec_get_alg_bitmap(qm, SEC_DRV_ALG_BITMAP_HIGH_TB,
|
|
SEC_DRV_ALG_BITMAP_LOW_TB);
|
|
|
|
mutex_lock(&sec_algs_lock);
|
|
if (sec_available_devs) {
|
|
sec_available_devs++;
|
|
goto unlock;
|
|
}
|
|
|
|
ret = sec_register_skcipher(alg_mask);
|
|
if (ret)
|
|
goto unlock;
|
|
|
|
ret = sec_register_aead(alg_mask);
|
|
if (ret)
|
|
goto unreg_skcipher;
|
|
|
|
sec_available_devs++;
|
|
mutex_unlock(&sec_algs_lock);
|
|
|
|
return 0;
|
|
|
|
unreg_skcipher:
|
|
sec_unregister_skcipher(alg_mask, ARRAY_SIZE(sec_skciphers));
|
|
unlock:
|
|
mutex_unlock(&sec_algs_lock);
|
|
return ret;
|
|
}
|
|
|
|
void sec_unregister_from_crypto(struct hisi_qm *qm)
|
|
{
|
|
u64 alg_mask;
|
|
|
|
alg_mask = sec_get_alg_bitmap(qm, SEC_DRV_ALG_BITMAP_HIGH_TB,
|
|
SEC_DRV_ALG_BITMAP_LOW_TB);
|
|
|
|
mutex_lock(&sec_algs_lock);
|
|
if (--sec_available_devs)
|
|
goto unlock;
|
|
|
|
sec_unregister_aead(alg_mask, ARRAY_SIZE(sec_aeads));
|
|
sec_unregister_skcipher(alg_mask, ARRAY_SIZE(sec_skciphers));
|
|
|
|
unlock:
|
|
mutex_unlock(&sec_algs_lock);
|
|
}
|